Plasma brain-derived neurotrophic factor and dynamic cerebral autoregulation in acute response to glycemic control following breakfast in young men

2021 ◽  
Vol 320 (1) ◽  
pp. R69-R79
Author(s):  
Hayato Tsukamoto ◽  
Aya Ishibashi ◽  
Christopher J. Marley ◽  
Yasushi Shinohara ◽  
Soichi Ando ◽  
...  

We examined the acute impact of both low- and high-glycemic index (GI) breakfasts on plasma brain-derived neurotrophic factor (BDNF) and dynamic cerebral autoregulation (dCA) compared with breakfast omission. Ten healthy men (age 24 ± 1 yr) performed three trials in a randomized crossover order; omission and Low-GI (GI = 40) and High-GI (GI = 71) breakfast conditions. Middle cerebral artery velocity (transcranial Doppler ultrasonography) and arterial pressure (finger photoplethysmography) were continuously measured for 5 min before and 120 min following breakfast consumption to determine dCA using transfer function analysis. After these measurements of dCA, venous blood samples for the assessment of plasma BDNF were obtained. Moreover, blood glucose was measured before breakfast and every 30 min thereafter. The area under the curve of 2 h postprandial blood glucose in the High-GI trial was higher than the Low-GI trial ( P < 0.01). The GI of the breakfast did not affect BDNF. In addition, both very-low (VLF) and low-frequency (LF) transfer function phase or gains were not changed during the omission trial. In contrast, LF gain (High-GI P < 0.05) and normalized gain (Low-GI P < 0.05) were decreased by both GI trials, while a decrease in VLF phase was observed in only the High-GI trial ( P < 0.05). These findings indicate that breakfast consumption augmented dCA in the LF range but High-GI breakfast attenuated cerebral blood flow regulation against slow change (i.e., the VLF range) in arterial pressure. Thus we propose that breakfast and glycemic control may be an important strategy to optimize cerebrovascular health.

2008 ◽  
Vol 109 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken-ichi Iwasaki ◽  
Ken Aoki ◽  
Wakako Kojima ◽  
Jitsu Kato ◽  
...  

Background Dexmedetomidine, which is often used in intensive care units in patients with compromised circulation, might induce further severe decreases in cerebral blood flow (CBF) with temporal decreases in arterial pressure induced by various stimuli if dynamic cerebral autoregulation is not improved. Therefore, the authors hypothesized that dexmedetomidine strengthens dynamic cerebral autoregulation. Methods Fourteen healthy male subjects received placebo, low-dose dexmedetomidine (loading, 3 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.2 microg x kg(-1) x h(-1) for 60 min), and high-dose dexmedetomidine (loading, 6 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.4 microg x kg(-1) x h(-1) for 60 min) infusions in a randomized, double-blind, crossover study. After 70 min of drug administration, dynamic cerebral autoregulation was estimated by transfer function analysis between arterial pressure variability and CBF velocity variability, and the thigh cuff method. Results Compared with placebo, steady state CBF velocity and mean blood pressure significantly decreased during administration of dexmedetomidine. Transfer function gain in the very-low-frequency range increased and phase in the low-frequency range decreased significantly, suggesting alterations in dynamic cerebral autoregulation in lower frequency ranges. Moreover, the dynamic rate of regulation and percentage restoration in CBF velocity significantly decreased when a temporal decrease in arterial pressure was induced by thigh cuff release. Conclusion Contrary to the authors' hypothesis, the current results of two experimental analyses suggest together that dexmedetomidine weakens dynamic cerebral autoregulation and delays restoration in CBF velocity during conditions of decreased steady state CBF velocity. Therefore, dexmedetomidine may lead to further sustained reductions in CBF during temporal decreases in arterial pressure.


2010 ◽  
Vol 31 (1) ◽  
pp. 283-292 ◽  
Author(s):  
Ken-Ichi Iwasaki ◽  
Rong Zhang ◽  
Julie H Zuckerman ◽  
Yojiro Ogawa ◽  
Lærke H Hansen ◽  
...  

Cerebral blood flow (CBF) increases and dynamic cerebral autoregulation is impaired by acute hypoxia. We hypothesized that progressive hypocapnia with restoration of arterial oxygen content after altitude acclimatization would normalize CBF and dynamic cerebral autoregulation. To test this hypothesis, dynamic cerebral autoregulation was examined by spectral and transfer function analyses between arterial pressure and CBF velocity variabilities in 11 healthy members of the Danish High-Altitude Research Expedition during normoxia and acute hypoxia (10.5% O2) at sea level, and after acclimatization (for over 1 month at 5,260 m at Chacaltaya, Bolivia). Arterial pressure and CBF velocity in the middle cerebral artery (transcranial Doppler), were recorded on a beat-by-beat basis. Steady-state CBF velocity increased during acute hypoxia, but normalized after acclimatization with partial restoration of SaO2 (acute, 78%±2%; chronic, 89%±1%) and progression of hypocapnia (end-tidal carbon dioxide: acute, 34±2 mm Hg; chronic, 21±1 mm Hg). Coherence (0.40±0.05 Units at normoxia) and transfer function gain (0.77±0.13 cm/s per mm Hg at normoxia) increased, and phase (0.86±0.15 radians at normoxia) decreased significantly in the very-low-frequency range during acute hypoxia (gain, 141%±24%; coherence, 136%±29%; phase, −25%±22%), which persisted after acclimatization (gain, 136%±36%; coherence, 131%±50%; phase, −42%±13%), together indicating impaired dynamic cerebral autoregulation in this frequency range. The similarity between both acute and chronic conditions suggests that dynamic cerebral autoregulation is impaired by hypoxia even after successful acclimatization to an extreme high altitude.


2012 ◽  
Vol 112 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Ken-ichi Iwasaki ◽  
Yojiro Ogawa ◽  
Ken Aoki ◽  
Ryo Yanagida

We examined changes in cerebral circulation in 15 healthy men during exposure to mild +Gz hypergravity (1.5 Gz, head-to-foot) using a short-arm centrifuge. Continuous arterial pressure waveform (tonometry), cerebral blood flow (CBF) velocity in the middle cerebral artery (transcranial Doppler ultrasonography), and partial pressure of end-tidal carbon dioxide (ETco2) were measured in the sitting position (1 Gz) and during 21 min of exposure to mild hypergravity (1.5 Gz). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial pressure (MAP) and mean CBF velocity (MCBFV). Steady-state MAP did not change, but MCBFV was significantly reduced with 1.5 Gz (−7%). ETco2 was also reduced (−12%). Variability of MAP increased significantly with 1.5 Gz in low (53%)- and high-frequency ranges (88%), but variability of MCBFV did not change in these frequency ranges, resulting in significant decreases in transfer function gain between MAP and MCBFV (gain in low-frequency range, −17%; gain in high-frequency range, −13%). In contrast, all of these indexes in the very low-frequency range were unchanged. Transfer from arterial pressure oscillations to CBF fluctuations was thus suppressed in low- and high-frequency ranges. These results suggest that steady-state global CBF was reduced, but dynamic cerebral autoregulation in low- and high-frequency ranges was improved with stabilization of CBF fluctuations despite increases in arterial pressure oscillations during mild +Gz hypergravity. We speculate that this improvement in dynamic cerebral autoregulation within these frequency ranges may have been due to compensatory effects against the reduction in steady-state global CBF.


2005 ◽  
Vol 289 (3) ◽  
pp. H1202-H1208 ◽  
Author(s):  
Ronney B. Panerai ◽  
Michelle Moody ◽  
Penelope J. Eames ◽  
John F. Potter

Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco2 were continuously recorded in 14 right-handed healthy subjects (21–43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 ± 0.16 vs. 0.26 ± 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 ± 0.23 vs. 0.29 ± 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 ± 0.37 vs. 0.46 ± 0.32 cm·s−1·mmHg−1, P < 0.05) and left (0.61 ± 0.29 vs. 0.45 ± 0.24 cm·s−1·mmHg−1, P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 ± 0.31 vs. 0.39 ± 0.15 cm·s−1·mmHg−1, P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (−0.04 ± 1.01 vs. 0.80 ± 0.86 rad, P < 0.01) and left (0.11 ± 0.81 vs. 0.57 ± 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 ± 0.87 vs. 0.64 ± 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.


2009 ◽  
Vol 296 (5) ◽  
pp. R1598-R1605 ◽  
Author(s):  
David A. Low ◽  
Jonathan E. Wingo ◽  
David M. Keller ◽  
Scott L. Davis ◽  
Jian Cui ◽  
...  

This study tested the hypothesis that passive heating impairs cerebral autoregulation. Transfer function analyses of resting arterial blood pressure and middle cerebral artery blood velocity (MCA Vmean), as well as MCA Vmean and blood pressure responses to rapid deflation of previously inflated thigh cuffs, were examined in nine healthy subjects under normothermic and passive heat stress (increase core temperature 1.1 ± 0.2°C, P < 0.001) conditions. Passive heating reduced MCA Vmean [change (Δ) of 8 ± 8 cm/s, P = 0.01], while blood pressure was maintained (Δ −1 ± 4 mmHg, P = 0.36). Coherence was decreased in the very-low-frequency range during heat stress (0.57 ± 0.13 to 0.26 ± 0.10, P = 0.001), but was >0.5 and similar between normothermia and heat stress in the low- (0.07–0.20 Hz, P = 0.40) and high-frequency (0.20–0.35 Hz, P = 0.12) ranges. Transfer gain was reduced during heat stress in the very-low-frequency (0.88 ± 0.38 to 0.59 ± 0.19 cm·s−1·mmHg−1, P = 0.02) range, but was unaffected in the low- and high-frequency ranges. The magnitude of the decrease in blood pressure (normothermia: 20 ± 4 mmHg, heat stress: 19 ± 6 mmHg, P = 0.88) and MCA Vmean (13 ± 4 to 12 ± 6 cm/s, P = 0.59) in response to cuff deflation was not affected by the thermal condition. Similarly, the rate of regulation of cerebrovascular conductance (CBVC) after cuff release (0.44 ± 0.22 to 0.38 ± 0.13 ΔCBVC units/s, P = 0.16) and the time for MCA Vmean to recover to precuff deflation baseline (10.0 ± 7.9 to 8.7 ± 4.9 s, P = 0.77) were not affected by heat stress. Counter to the proposed hypothesis, similar rate of regulation responses suggests that heat stress does not impair the ability to control cerebral perfusion after a rapid reduction in perfusion pressure, while reduced transfer function gain and coherence in the very-low-frequency range during heat stress suggest that dynamic cerebral autoregulation is improved during spontaneous oscillations in blood pressure within this frequency range.


2008 ◽  
Vol 104 (2) ◽  
pp. 490-498 ◽  
Author(s):  
Philip N. Ainslie ◽  
Shigehiko Ogoh ◽  
Katie Burgess ◽  
Leo Celi ◽  
Ken McGrattan ◽  
...  

We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1–2 days after arrival at HA (∼5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (−11 ± 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (−12 ± 3 vs. −5 ± 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by ∼50% ( P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.


Author(s):  
Jose A. NERY-NETO ◽  
Andrew O. SANTOS ◽  
Larissa C. SILVA ◽  
Elison C. HOLANDA ◽  
Maria C. BRITO ◽  
...  

Objectives: To investigate glycemic control in outpatient clinics at a university hospital, as well as to correlate HbA1c with fasting glucose and post-prandial glycemia, in order to assess which variable best correlates with an HbA1c. Methods: This is a descriptive cross-sectional study, with data that were collected from electronic medical records, from the random consultation of the medical of the blood glucose measurement. To check glycemic control, the parameters defined by the Brazilian Diabetes Society (2017-2018) were used: fasting glucose <100 mg / dL, HbA1c <7% and postprandial glucose <160 mg / dL. A statistical analysis was performed with the aid of the SPSS® program (version 13.0), adopting p <0.05 as the level of statistical significance. Results: 250 medical records were applied, with the average age of the participants being 60.1 ± 12.9 years (87 men and 163 women). A fasting glycemia was altered beyond the recommended in 80.8% of the individuals evaluated, HbA1c in 45.2% of the cases and 66% of the participants in the study possessed postprandial glycemia in addition to the recommended goals. The correlation between HbA1c/fasting blood glucose (rs= 0.74) and HbA1c/postprandial blood glucose (rs = 0.60) was, respectively, strong and moderate. Conclusions: With this study, it was possible to verify that a significant portion of the limits of use did not have good glycemic control. The correlation between fasting glucose and HbA1c confirmed that HbA1c is the best parameter for monitoring blood glucose levels in diabetes mellitus. In addition, the fasting blood glucose / HbA1c correlation showed greater strength in the postprandial blood glucose / HbA1c correlation.


2016 ◽  
Vol 120 (12) ◽  
pp. 1434-1441 ◽  
Author(s):  
Sung-Moon Jeong ◽  
Seon-Ok Kim ◽  
Darren S. DeLorey ◽  
Tony G. Babb ◽  
Benjamin D. Levine ◽  
...  

Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P = 0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 ( P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07–0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.


Author(s):  
Jenna B. Gillen ◽  
Stephanie Estafanos ◽  
Alexa Govette

Type 2 diabetes (T2D) is a rapidly growing yet largely preventable chronic disease. Exaggerated increases in blood glucose concentration following meals is a primary contributor to many long-term complications of the disease that decrease quality of life and reduce lifespan. Adverse health consequences also manifest years prior to the development of T2D due to underlying insulin resistance and exaggerated postprandial concentrations of the glucose-lowering hormone insulin. Postprandial hyperglycemic and hyperinsulinemic excursions can be improved by exercise, which contributes to the well-established benefits of physical activity for the prevention and treatment of T2D. The aim of this review is to describe the postprandial dysmetabolism that occurs in individuals at risk for and with T2D, and highlight how acute and chronic exercise can lower postprandial glucose and insulin excursions. In addition to describing the effects of traditional moderate-intensity continuous exercise on glycemic control, we highlight other forms of activity including low-intensity walking, high-intensity interval exercise, and resistance training. In an effort to improve knowledge translation and implementation of exercise for maximal glycemic benefits, we also describe how timing of exercise around meals and post-exercise nutrition can modify acute and chronic effects of exercise on glycemic control and insulin sensitivity. Novelty bullets • Exaggerated postprandial blood glucose and insulin excursions are associated with disease risk • Both a single session and repeated sessions of exercise improve postprandial glycemic control in individuals with and without T2D • The glycemic benefits of exercise can be enhanced by considering the timing and macronutrient composition of meals around exercise


Sign in / Sign up

Export Citation Format

Share Document