Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise

2011 ◽  
Vol 301 (2) ◽  
pp. R534-R541 ◽  
Author(s):  
Shunsaku Koga ◽  
David C. Poole ◽  
Yoshiyuki Fukuoka ◽  
Leonardo F. Ferreira ◽  
Narihiko Kondo ◽  
...  

The conventional continuous wave near-infrared spectroscopy (CW-NIRS) has enabled identification of regional differences in muscle deoxygenation following onset of exercise. However, assumptions of constant optical factors (e.g., path length) used to convert the relative changes in CW-NIRS signal intensity to values of relative concentration, bring the validity of such measurements into question. Furthermore, to justify comparisons among sites and subjects, it is essential to correct the amplitude of deoxygenated hemoglobin plus myoglobin [deoxy(Hb+Mb)] for the adipose tissue thickness (ATT). We used two time-resolved NIRS systems to measure the distribution of the optical factors directly, thereby enabling the determination of the absolute concentrations of deoxy(Hb+Mb) simultaneously at the distal and proximal sites within the vastus lateralis (VL) and the rectus femoris muscles. Eight subjects performed cycle exercise transitions from unloaded to heavy work rates (>gas exchange threshold). Following exercise onset, the ATT-corrected amplitudes (Ap), time delay (TDp), and time constant (τp) of the primary component kinetics in muscle deoxy(Hb + Mb) were spatially heterogeneous (intersite coefficient of variation range for the subjects: 10–50 for Ap, 16–58 for TDp, 14–108% for τp). The absolute and relative amplitudes of the deoxy(Hb+Mb) responses were highly dependent on ATT, both within subjects and between measurement sites. The present results suggest that regional heterogeneity in the magnitude and temporal profile of muscle deoxygenation is a consequence of differential matching of O2 delivery and O2 utilization, not an artifact caused by changes in optical properties of the tissue during exercise or variability in the overlying adipose tissue.

2007 ◽  
Vol 103 (6) ◽  
pp. 2049-2056 ◽  
Author(s):  
Shunsaku Koga ◽  
David C. Poole ◽  
Leonard F. Ferreira ◽  
Brian J. Whipp ◽  
Narihiko Kondo ◽  
...  

To test the hypothesis that, during exercise, substantial heterogeneity of muscle hemoglobin and myoglobin deoxygenation [deoxy(Hb + Mb)] dynamics exists and to determine whether such heterogeneity is associated with the speed of pulmonary O2 uptake (pV̇o2) kinetics, we adapted multi-optical fibers near-infrared spectroscopy (NIRS) to characterize the spatial distribution of muscle deoxygenation kinetics at exercise onset. Seven subjects performed cycle exercise transitions from unloaded to moderate [<gas exchange threshold (GET)] and heavy (>GET) work rates and the relative changes in deoxy(Hb + Mb), at 10 sites in the quadriceps, were sampled by NIRS. At exercise onset, the time delays in muscle deoxy(Hb + Mb) were spatially inhomogeneous [intersite coefficient of variation (CV), 3∼56% for <GET, 2∼21% for >GET]. The primary component kinetics (time constant) of muscle deoxy(Hb + Mb) reflecting increased O2 extraction were also spatially inhomogeneous (intersite CV, 6∼48% for <GET, 7∼47% for >GET) and faster (P < 0.05) than those of phase 2 pV̇o2. However, the degree of dynamic intersite heterogeneity in muscle deoxygenation did not correlate significantly with phase 2 pV̇o2 kinetics. In conclusion, the dynamics of quadriceps microvascular oxygenation demonstrates substantial spatial heterogeneity that must arise from disparities in the relative kinetics of V̇o2 and O2 delivery increase across the regions sampled.


Author(s):  
Norita Gildea ◽  
Adam McDermott ◽  
Joel Rocha ◽  
Donal O'Shea ◽  
Simon Green ◽  
...  

We assessed the time course of changes in oxygen uptake (V̇O2) and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, [HHb+Mb]) kinetics during transitions to moderate-intensity cycling following 12-weeks of low-volume high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) in adults with type 2 diabetes (T2D). Participants were randomly assigned to MICT (n=10, 50 min of moderate-intensity cycling), HIIT (n=9, 10x1 min at ~90% maximal heart rate) or non-exercising control (n=9) groups. Exercising groups trained 3 times per week and measurements were taken every 3 weeks. [HHb+Mb] kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The local matching of O2 delivery to O2 utilization was assessed by the Δ[HHb+Mb]/ΔV̇O2ratio. The pretraining time constant of the primary phase of V̇O2 (τV̇O2p ) decreased (P<0.05) at wk 3 of training in both MICT (from 44±12 to 32±5 s) and HIIT (from 42±8 to 32 ± 4 s) with no further changes thereafter; while no changes were reported in controls. The pretraining overall dynamic response of muscle deoxygenation (τ'[HHb+Mb]) was faster than τV̇O2p in all groups, resulting in Δ[HHb+Mb]/V̇O2p showing a transient "overshoot" relative to the subsequent steady-state level. After 3 wks, the Δ[HHb+Mb]/V̇O2p overshoot was eliminated only in the training groups, so that τ'[HHb+Mb] was not different to τV̇O2p in MICT and HIIT. The enhanced V̇O2 kinetics response consequent to both MICT and HIIT in T2D was likely attributed to a training-induced improvement in matching of O2 delivery to utilization.


2013 ◽  
Vol 38 (12) ◽  
pp. 1206-1210 ◽  
Author(s):  
Houssem Zorgati ◽  
Katia Collomp ◽  
Virgile Amiot ◽  
Fabrice Prieur

This study examined the effect of pedal cadence on the heterogeneity of muscle deoxygenation during exercise of moderate intensity. Twelve healthy subjects performed 6 min of cycling at 40 and 100 r·min–1 at 80% of the workload corresponding to the gas exchange threshold. Gas exchanges were measured breath by breath during each exercise. Muscle deoxygenation (HHb, i.e., O2 extraction) was monitored continuously by near-infrared spectroscopy at eight sites on the vastus lateralis. The heterogeneity of HHb was assessed using the relative dispersion of the signal measured at the eight sites (i.e., 100 × standard deviation / mean). HHb was not altered by the pedal cadence, whereas pulmonary V̇O2 was higher at 100 r·min–1 than at 40 r·min–1 (p < 0.001). The relative dispersion of HHb was significantly higher at 100 r·min–1 than at 40 r·min–1 (p < 0.001). These results indicate that pedal cadence has no effect on O2 extraction but that an elevated cadence would increase muscle V̇O2, suggesting an increase in muscle blood flow. Elevated cadence also induced greater heterogeneity of the muscle’s V̇O2/Q̇O2 delivery ratio, suggesting a change in the adequacy between O2 demand and O2 delivery in some regions of active muscle.


2002 ◽  
Vol 92 (6) ◽  
pp. 2571-2577 ◽  
Author(s):  
Andrew M. Jones ◽  
Helen Carter ◽  
Jamie S. M. Pringle ◽  
Iain T. Campbell

The purpose of this study was to test the effect of oral creatine (Cr) supplementation on pulmonary oxygen uptake (V˙o 2) kinetics during moderate [below ventilatory threshold (VT)] and heavy (above VT) submaximal cycle exercise. Nine subjects (7 men; means ± SD: age 28 ± 3 yr, body mass 73.2 ± 5.6 kg, maximalV˙o 2 46.4 ± 8.0 ml · kg−1 · min−1) volunteered to participate in this study. Subjects performed transitions of 6-min duration from unloaded cycling to moderate (80% VT; 8–12 repeats) and heavy exercise (50% change; i.e., halfway between VT and maximal V˙o 2; 4–6 repeats), both in the control condition and after Cr loading, in a crossover design. The Cr loading regimen involved oral consumption of 20 g/day of Cr monohydrate for 5 days, followed by a maintenance dose of 5 g/day thereafter. V˙o 2 was measured breath by breath and modeled by using two (moderate) or three (heavy) exponential terms. For moderate exercise, there were no differences in the parameters of the V˙o 2 kinetic response between control and Cr-loaded conditions. For heavy exercise, the time-based parameters of the V˙o 2response were unchanged, but the amplitude of the primary component was significantly reduced with Cr loading (means ± SE: control 2.00 ± 0.12 l/min; Cr loaded 1.92 ± 0.10 l/min; P < 0.05) as was the end-exerciseV˙o 2 (control 2.19 ± 0.13 l/min; Cr loaded 2.12 ± 0.14 l/min; P < 0.05). The magnitude of the reduction in submaximalV˙o 2 with Cr loading was significantly correlated with the percentage of type II fibers in the vastus lateralis ( r = 0.87; P < 0.01; n = 7), indicating that the effect might be related to changes in motor unit recruitment patterns or the volume of muscle activated.


2017 ◽  
Vol 122 (6) ◽  
pp. 1435-1444 ◽  
Author(s):  
Michael C. McCrudden ◽  
Daniel A. Keir ◽  
Glen R. Belfry

We examined the effects of inserting 3-s recovery periods during high-intensity cycling exercise at 25-s and 10-s intervals on pulmonary oxygen uptake (V̇o2p), muscle deoxygenation [deoxyhemoglobin (HHb)], their associated kinetics (τ), and energy system contributions. Eleven men (24 ± 3 yr) completed two trials of three cycling protocols: an 8-min continuous protocol (CONT) and two 8-min intermittent exercise protocols with work-to-rest periods of 25 s to 3 s (25INT) and 10 s to 3 s (10INT). Each protocol began with a step-transition from a 20-W baseline to a power output (PO) of 60% between lactate threshold and maximal V̇o2p (Δ60). This PO was maintained for 8 min in CONT, whereas 3-s periods of 20-W cycling were inserted every 10 s and 25 s after the transition to Δ60 in 10INT and 25INT, respectively. Breath-by-breath gas exchange measured by mass spectrometry and turbine and vastus lateralis [HHb] measured by near-infrared spectroscopy were recorded throughout. Arterialized-capillary lactate concentration ([Lac−]) was obtained before and 2 min postexercise. The τV̇o2p was lowest ( P < 0.05) for 10INT (24 ± 4 s) and 25INT (23 ± 5 s) compared with CONT (28 ± 4 s), whereas HHb kinetics did not differ ( P > 0.05) between conditions. Postexercise [Lac−] was lowest ( P < 0.05) for 10INT (7.0 ± 1.7 mM), was higher for 25INT (10.3 ± 1.9 mM), and was greatest in CONT (14.3 ± 3.1 mM). Inserting 3-s recovery periods during heavy-intensity exercise speeded V̇o2p kinetics and reduced overall V̇o2p, suggesting an increased reliance on PCr-derived phosphorylation during the work period of INT compared with an identical PO performed continuously. NEW & NOTEWORTHY We report novel observations on the effects of differing heavy-intensity work durations between 3-s recovery periods on pulmonary oxygen uptake (V̇o2p) kinetics, muscle deoxygenation, and energy system contributions. Relative to continuous exercise, V̇o2p kinetics are faster in intermittent exercise, and increased frequency of 3-s recovery periods improves microvascular O2 delivery and reduces V̇o2p and arterialized-capillary lactate concentration. The metabolic burden of identical intensity work is altered when performed intermittently vs. continuously.


2003 ◽  
Vol 95 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Darren S. DeLorey ◽  
John M. Kowalchuk ◽  
Donald H. Paterson

The temporal relationship between the kinetics of phase 2 pulmonary O2 uptake (V̇o2p) and deoxygenation of the vastus lateralis muscle was examined during moderate-intensity leg-cycling exercise. Young adults (5 men, 6 women; 23 ± 3 yr; mean ± SD) performed repeated transitions on 3 separate days from 20 W to a constant work rate corresponding to 80% of lactate threshold. Breath-by-breath V̇o2p was measured by mass spectrometer and volume turbine. Deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin and myoglobin were sampled each second by near-infrared spectroscopy (Hamamatsu NIRO-300). V̇o2p data were filtered, interpolated to 1 s, and averaged to 5-s bins; HHb data were averaged to 5-s bins. Phase 2 V̇o2p data were fit with a monoexponential model. For HHb, a time delay (TDHHb) from exercise onset to an increase in HHb was determined, and thereafter data were fit with a monoexponential model. The time constant for V̇o2p (30 ± 8 s) was slower ( P < 0.01) than that for HHb (10 ± 3 s). The TDHHb before an increase in HHb was 13 ± 2 s. The possible mechanisms of the TDHHb are discussed with reference to metabolic activation and matching of local muscle O2 delivery and O2 utilization. After this initial TDHHb, the kinetics of local muscle deoxygenation were faster than those of phase 2 V̇o2p (and presumably muscle O2 consumption), reflecting increased O2 extraction and a mismatch between local muscle O2 consumption and perfusion.


2012 ◽  
Vol 113 (9) ◽  
pp. 1466-1475 ◽  
Author(s):  
Braden M. R. Gravelle ◽  
Juan M. Murias ◽  
Matthew D. Spencer ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

The matching of muscle O2 delivery to O2 utilization can be inferred from the adjustments in muscle deoxygenation (Δ[HHb]) and pulmonary O2 uptake (V̇o2p). This study examined the adjustments of V̇o2p and Δ[HHb] during ramp incremental (RI) and constant-load (CL) exercise in adult males. Ten young adults (YA; age: 25 ± 5 yr) and nine older adults (OA; age: 70 ± 3 yr) completed two RI tests and six CL step transitions to a work rate (WR) corresponding to 1) 80% of the estimated lactate threshold (same relative WR) and 2) 50 W (same absolute WR). V̇o2p was measured breath by breath, and Δ[HHb] of the vastus lateralis was measured using near-infrared spectroscopy. Δ[HHb]-WR profiles were normalized from baseline (0%) to peak Δ[HHb] (100%) and fit using a sigmoid function. The sigmoid slope ( d) was greater ( P < 0.05) in OA (0.027 ± 0.01%/W) compared with YA (0.017 ± 0.01%/W), and the c/ d value (a value corresponding to 50% of the amplitude) was smaller ( P < 0.05) for OA (133 ± 40 W) than for YA (195 ± 51 W). No age-related differences in the sigmoid parameters were reported when WR was expressed as a percentage of peak WR. V̇o2p kinetics compared with Δ[HHb] kinetics for the 50-W transition were similar between YA and OA; however, Δ[HHb] kinetics during the transition to 80% of the lactate threshold were faster than V̇o2p kinetics in both groups. The greater reliance on O2 extraction displayed in OA during RI exercise suggests a lower O2 delivery-to-O2 utilization relationship at a given absolute WR compared with YA.


2004 ◽  
Vol 29 (4) ◽  
pp. 504-523 ◽  
Author(s):  
Yagesh N. Bhambhani

During the last decade, NIRS has been used extensively to evaluate the changes in muscle oxygenation and blood volume during a variety of exercise modes. The important findings from this research are as follows: (a) There is a strong correlation between the lactate (ventilatory) threshold during incremental cycle exercise and the exaggerated reduction in muscle oxygenation measured by NIRS. (b) The delay in steady-state oxygen uptake during constant work rate exercise at intensities above the lactate/ventilatory threshold is closely related to changes in muscle oxygenation measured by NIRS. (c) The degree of muscle deoxygenation at the same absolute oxygen uptake is significantly lower in older persons compared younger persons; however, these changes are negated when muscle oxygenation is expressed relative to maximal oxygen uptake values. (d) There is no significant difference between the rate of biceps brachii and vastus lateralis deoxygenation during arm cranking and leg cycling exercise, respectively, in males and females. (e) Muscle deoxygenation trends recorded during short duration, high-intensity exercise such as the Wingate test indicate that there is a substantial degree of aerobic metabolism during such exercise. Recent studies that have used NIRS at multiple sites, such as brain and muscle tissue, provide useful information pertaining to the regional changes in oxygen availability in these tissues during dynamic exercise. Key words: blood volume, noninvasive measurement


2015 ◽  
Vol 119 (11) ◽  
pp. 1313-1319 ◽  
Author(s):  
Dai Okushima ◽  
David C. Poole ◽  
Harry B. Rossiter ◽  
Thomas J. Barstow ◽  
Narihiko Kondo ◽  
...  

Muscle deoxygenation (i.e., deoxy[Hb + Mb]) during exercise assesses the matching of oxygen delivery (Q̇o2) to oxygen utilization (V̇o2). Until now limitations in near-infrared spectroscopy (NIRS) technology did not permit discrimination of deoxy[Hb + Mb] between superficial and deep muscles. In humans, the deep quadriceps is more highly vascularized and oxidative than the superficial quadriceps. Using high-power time-resolved NIRS, we tested the hypothesis that deoxygenation of the deep quadriceps would be less than in superficial muscle during incremental cycling exercise in eight males. Pulmonary V̇o2 was measured and muscle deoxy[Hb + Mb] was determined in the superficial vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF-s) and the deep rectus femoris (RF-d). deoxy[Hb + Mb] in RF-d was significantly less than VL at 70% (67.2 ± 7.0 vs. 75.5 ± 10.7 μM) and 80% (71.4 ± 11.0 vs. 79.0 ± 15.4 μM) of peak work rate (WRpeak), but greater than VL and VM at WRpeak (87.7 ± 32.5 vs. 76.6 ± 17.5 and 75.1 ± 19.9 μM). RF-s was intermediate at WRpeak (82.6 ± 18.7 μM). Total hemoglobin and myoglobin concentration and tissue oxygen saturation were significantly greater in RF-d than RF-s throughout exercise. The slope of deoxy[Hb + Mb] increase (proportional to Q̇o2/V̇o2) in VL and VM slowed markedly above 70% WRpeak, whereas it became greater in RF-d. This divergent deoxygenation pattern may be due to a greater population of slow-twitch muscle fibers in the RF-d muscle and the differential recruitment profiles and vascular and metabolic control properties of specific fiber populations within superficial and deeper muscle regions.


Sign in / Sign up

Export Citation Format

Share Document