scholarly journals Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium

2011 ◽  
Vol 301 (3) ◽  
pp. R783-R790 ◽  
Author(s):  
Bradley J. Behnke ◽  
Robert B. Armstrong ◽  
Michael D. Delp

The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (GastRed and GastWhite, respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α1-phenylephrine or α2-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and GastRed and an 8.7-fold increase in flow to the GastWhite. In isolated arterioles, α2-mediated vasoconstriction was greatest in GastWhite (∼50%) and less in GastRed (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α1-mediated vasoconstriction in the GastWhite and GastRed vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α1- and α2-adrenoreceptors on the vascular smooth muscle.

Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


2019 ◽  
Vol 316 (5) ◽  
pp. E695-E706 ◽  
Author(s):  
Mark W. Pataky ◽  
Carmen S. Yu ◽  
Yilin Nie ◽  
Edward B. Arias ◽  
Manak Singh ◽  
...  

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise’s effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


1996 ◽  
Vol 271 (2) ◽  
pp. C690-C699 ◽  
Author(s):  
G. L. Tsika ◽  
J. L. Wiedenman ◽  
L. Gao ◽  
J. J. McCarthy ◽  
K. Sheriff-Carter ◽  
...  

Mechanical overload leads to hypertrophy, increased type I fiber composition, and beta-myosin heavy chain (beta-MHC) induction in the fast-twitch plantaris muscle. To better understand the mechanism(s) involved in beta-MHC induction, we have examined inducible expression of transgenes carrying the simultaneous mutation of three DNA regulatory subregions [muscle CAT (MCAT), C-rich, and beta e3] in the context of either 5,600-base pair (bp; beta 5.6mut3) or 600-bp (beta 0.6mut3) beta-MHC promoter in overloaded plantaris muscles of transgenic mice. Protein extract from mechanically overloaded plantaris muscle of mice, harboring either mutant transgene beta 5.6mut3 or beta 0.6mut3, showed an unexpected 2.8- to 4.5-fold increase in chloramphenicol acetyltransferase (CAT) specific activity relative to their respective controls. Similar results were obtained with wild-type (wt) beta-MHC transgenes (beta 5.6wt, beta 0.6wt). Histochemical staining for both myofibrillar ATPase and CAT activity and CAT immunohistochemistry revealed a striking increase in type I fibers and that CAT expression was restricted to these fibers in overloaded plantaris muscle of beta 5.6mut3 transgenic mice. Our transgenic data suggest that beta-MHC transgenes, and perhaps the endogenous beta-MHC gene, are induced by mechanical overload via a mechanism(s) that does not exclusively require the MCAT, C-rich, or beta e3 subregions.


1993 ◽  
Vol 74 (2) ◽  
pp. 742-749 ◽  
Author(s):  
D. J. Prezant ◽  
D. E. Valentine ◽  
H. H. Kim ◽  
E. I. Gentry

The effects of 4.5 days of acute starvation, either alone or followed by refeeding (ad libitum), on diaphragm contractility, fatigue, and fiber types were studied in male rats. Contractility and fatigue resistance indexes were measured in an in vitro costal diaphragm strip preparation with direct stimulation at 37 degrees C. Compared with controls, starvation produced a 28 +/- 1% (P < 0.001) reduction in body weight and an 18 +/- 4% (P < 0.001) reduction in costal diaphragm weight. Twitch and tetanic tensions (normalized for weight or cross-sectional area) were not reduced by starvation. Starvation produced significant increases in fatigue resistance indexes after a 5-Hz stimulation paradigm but not after a 100-Hz paradigm, supporting the hypothesis that fatigue resistance is dependent on the energy demand of a given paradigm. The proportions of type I and type II fibers were similar between diaphragms of starved and control rats, but the cross-sectional area of type II fibers decreased significantly by 18 +/- 7% (P < 0.01). Thus, despite the significant decrease in diaphragm weight after starvation, contractility was preserved and fatigue resistance was increased (low-output paradigm). This is consistent with the decrease in type II fiber area. Refeeding restored all parameters so that there were no longer significant differences in body or diaphragm weight, contractility, fatigue, or fiber types.


1985 ◽  
Vol 248 (1) ◽  
pp. C37-C42 ◽  
Author(s):  
G. A. Dudley ◽  
R. L. Terjung

Significant activation of AMP deaminase in fast-twitch muscle leads to a loss of ATP and accumulation of NH4 and IMP. Although this occurs during severe metabolic stress caused by intense contraction conditions, the process is probably influenced by the muscle's capacity for aerobic metabolism. We evaluated this possibility during moderately intense (5 Hz) contraction conditions in situ by following the time course of NH4 and IMP accumulation in fast-twitch, low-oxidative white (FTW) and fast-twitch, high-oxidative red (FTR) muscle of the rat. A high rate of IMP formation, resulting in a 50% loss of ATP content, occurred in normal FTW, but not FTR muscle, during contractions when blood flow was intact. Eliminating blood flow prior to contractions, however, removed the distinction between the FTR and FTW muscle. The FTR fiber section now produced a high IMP content and a stoichiometric loss of ATP. Thus the ability of the FTR fiber to sustain this contraction effort without an ATP loss is due to its greater functional capacity for aerobic metabolism. The FTW muscle section of trained animals exhibited a reduced accumulation of IMP and a smaller loss of ATP during the same 5-Hz stimulation. The mitochondrial content and peak blood flow of this FTW fiber section is increased by training. Thus it is probable that the cellular conditions leading to a significant accumulation of IMP in fast-twitch muscle are determined by the metabolic stress established by the contraction effort, relative to the muscle fiber's functional capacity for aerobic metabolism.


1983 ◽  
Vol 55 (4) ◽  
pp. 1072-1078 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flows to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) fiber sections of the gastrocnemius-soleus-plantaris muscle group of sedentary and trained rats were determined using radiolabeled microspheres during the 1st and 10th min of in situ contractions at frequencies ranging from 7.5 to 90 tetani/min. Treadmill training increased the cytochrome c content of both FTW (6.0 +/- 0.13 nmol/g to 12.2 +/- 0.27) and FTR (22.2 +/- 0.32 to 26.7 +/- 0.25) muscle. Loss of tension, evident at 15 tetani/min and above, was less (P less than 0.001) in trained animals. Although steady-state blood flows (10th min) to FTR and STR fibers were not altered by training, initial flows (1st min) to the trained FTR section were greater (P less than 0.025). Overall initial flows to both red fiber types were excessively high at the easier contraction conditions, but subsequently declined to values more reflective of the expected energy demands. This time-dependent relative hyperemia was not found in either sedentary or trained FTW muscle. However, training increased the maximal blood flow in the FTW sections [60 +/- 3.2 (n = 36) vs. 88 +/- 5.2 ml X min X 100 g-1 (n = 36)]. This 40-50% increase in FTW blood flow would produce only a modest 10% increase in blood flow to a whole mixed-fiber muscle, since the flow capacity of the FTW muscle is only one third to one fourth that of FTR muscle. This overall increase in blood flow, however, is similar to changes in VO2max found in trained rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 63 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
G. C. Sieck ◽  
R. D. Sacks ◽  
C. E. Blanco

The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.


1993 ◽  
Vol 75 (6) ◽  
pp. 2689-2695 ◽  
Author(s):  
B. D. Johnson ◽  
G. C. Sieck

In this study, we examined whether exhaustive activation reduces succinate dehydrogenase (SDH) activity in diaphragm muscle fibers. In adult male rats (approximately 300 g), the costal diaphragm was excised and positioned in a chamber perfused with mammalian Ringer solution kept at 26 degrees C and oxygenated with 95% O2–5% CO2. The muscle was stimulated directly at 10 or 75 Hz in trains of 500 ms duration (1/s) for 8 min. An adjacent unstimulated segment of muscle served as control. The two muscle segments were frozen, and serial sections were stained for myofibrillar adenosinetriphosphatase activity after alkaline and acid preincubation to classify type I, IIa, and IIb fibers. The extent of glycogen utilization was also examined histochemically to confirm exhaustive activation of muscle fibers. SDH activity was quantified using a microdensitometric procedure implemented on an image-processing system. Exhaustive activation at both 10 and 75 Hz caused a significant decrease in SDH activity of all fiber types, with the decrease after 10-Hz stimulation being greater than that after 75-Hz stimulation. At both stimulation frequencies, type IIb fibers demonstrated the greatest decrease in SDH activity (36% after 10-Hz and 27% after 75-Hz stimulation), whereas type I and IIa fibers both displayed reductions of approximately 27 and approximately 19% after 10- and 75-Hz stimulation, respectively. The greater reduction of SDH activity in type IIb fibers indicates an inverse relationship between activation-induced reductions in SDH activity and fiber oxidative capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Juliana Osório Alves ◽  
Leonardo Matta Pereira ◽  
Igor Cabral Coutinho do Rêgo Monteiro ◽  
Luiz Henrique Pontes dos Santos ◽  
Alex Soares Marreiros Ferraz ◽  
...  

The enzymatic complex Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase (NOx) may be the principal source of reactive oxygen species (ROS). The NOX2 and NOX4 isoforms are tissue-dependent and are differentially expressed in slow-twitch fibers (type I fibers) and fast-twitch fibers (type II fibers) of skeletal muscle, making them different markers of ROS metabolism induced by physical exercise. The aim of this study was to investigate NOx signaling, as a non-adaptive and non-cumulative response, in the predominant fiber types of rat skeletal muscles 24 h after one strenuous treadmill exercise session. The levels of mRNA, reduced glycogen, thiol content, NOx, superoxide dismutase, catalase, glutathione peroxidase activity, and PPARGC1α and SLC2A4 gene expression were measured in the white gastrocnemius (WG) portion, the red gastrocnemius (RG) portion, and the soleus muscle (SOL). NOx activity showed higher values in the SOL muscle compared to the RG and WG portions. The same was true of the NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, glycogen content. Twenty-four hours after the strenuous exercise session, NOx expression increased in slow-twitch oxidative fibers. The acute strenuous exercise condition showed an attenuation of oxidative stress and an upregulation of antioxidant activity through PPARGC1α gene activity, antioxidant defense adaptations, and differential gene expression according to the predominant fiber type. The most prominent location of detoxification (indicated by NOX4 activation) in the slow-twitch oxidative SOL muscle was the mitochondria, while the fast-twitch oxidative RG portion showed a more cytosolic location. Glycolytic metabolism in the WG portion suggested possible NOX2/NOX4 non-regulation, indicating other possible ROS regulation pathways.


Sign in / Sign up

Export Citation Format

Share Document