scholarly journals Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle

2016 ◽  
Vol 310 (11) ◽  
pp. R1288-R1296 ◽  
Author(s):  
Shanthi Ganesan ◽  
Carmen Reynolds ◽  
Katrin Hollinger ◽  
Sarah C. Pearce ◽  
Nicholas K. Gabler ◽  
...  

Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts ( n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 258
Author(s):  
Hui Bai ◽  
Tingting Li ◽  
Yan Yu ◽  
Ningcong Zhou ◽  
Huijuan Kou ◽  
...  

It is a widely known that heat stress induces a reduction in milk production in cows and impairs their overall health. Studies have shown that taurine protects tissues and organs under heat stress. However, there have yet to be studies showing the functions of taurine in mammary alveolar cells-large T antigen (MAC-T) (a bovine mammary epithelial cell line) cells under heat shock. Therefore, different concentrations of taurine (10 mM, 50 mM, and 100 mM) were tested to determine the effects on heat-induced MAC-T cells. The results showed that taurine protected the cells against heat-induced damage as shown by morphological observations in conjunction with suppressed the translocation and expression of heat shock factor 1 (HSF1). Moreover, taurine not only reversed the decline in antioxidase (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)) activities but also attenuated the accumulation of malondialdehyde (MDA). Meanwhile, mitochondrial damage (morphology and complex I activity) resulting from heat exposure was mitigated. Taurine also alleviated the rates of cell apoptosis and markedly depressed the mRNA expressions of BCL2 associated X, apoptosis regulator (BAX) and caspase3. Furthermore, compared with the heat stress (HS) group, the protein levels of caspase3 and cleaved caspase3 were decreased in all taurine groups. In summary, taurine improves the antioxidant and anti-apoptosis ability of MAC-T cells thereby alleviates damage of cells due to heat insults.


Temperature ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Sandra I Rosado Montilla ◽  
Theresa P Johnson ◽  
Sarah C Pearce ◽  
Delphine Gardan-Salmon ◽  
Nicholas K Gabler ◽  
...  

2013 ◽  
Vol 305 (4) ◽  
pp. C406-C413 ◽  
Author(s):  
Steven S. Welc ◽  
Andrew R. Judge ◽  
Thomas L. Clanton

We previously reported that IL-6 production is acutely elevated in skeletal muscles exposed to ≥41°C, but the regulatory pathways are poorly understood. The present study characterizes the heat-induced transcriptional control of IL-6 in C2C12 muscle fibers. Hyperthermia exposure (42°C for 1 h) induced transcription from an IL-6 promoter-luciferase reporter plasmid. Heat shock factor-1 (HSF-1), a principal mediator of the heat shock response, was then tested for its role in IL-6 regulation. Overexpression of a constitutively active HSF-1 construct increased basal (37°C) promoter activity, whereas overexpression of a dominant negative HSF-1 reduced IL-6 promoter activity during basal and hyperthermia conditions. Since hyperthermia also induces stress-activated protein kinase (SAPK) signaling, we tested whether mutation of a transcription site downstream of SAPK, (i.e., activator protein-1, AP-1) influences IL-6 transcription in hyperthermia. The mutation had no effect on baseline reporter activity but completely inhibited heat-induced activity. We then tested whether pharmacologically induced states of protein stress, characteristic of cellular responses to hyperthermia and known to induce SAPKs and HSF-1, would induce IL-6 production in the absence of heat. The proteasome was inhibited with MG-132 in one set of experiments, and the unfolded protein response was stimulated with dithiothreitol, thapsigargin, tunicamycin, or castanospermine in other experiments. All treatments stimulated IL-6 protein secretion in the absence of hyperthermia. These studies demonstrate that IL-6 regulation in hyperthermia is directly controlled by HSF-1 and AP-1 signaling and that the IL-6 response in C2C12 myotubes is sensitive to categories of protein stress that reflect accumulation of damaged or unfolded proteins.


2006 ◽  
Vol 290 (6) ◽  
pp. C1625-C1632 ◽  
Author(s):  
Angela L. Morrison ◽  
Martin Dinges ◽  
Kristen D. Singleton ◽  
Kelli Odoms ◽  
Hector R. Wong ◽  
...  

Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1+/+) and knockout (HSF-1−/−) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1+/+ cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1−/− cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1−/− cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.


1999 ◽  
Vol 112 (16) ◽  
pp. 2765-2774 ◽  
Author(s):  
P.A. Mercier ◽  
N.A. Winegarden ◽  
J.T. Westwood

The induction of the heat shock genes in eukaryotes by heat and other forms of stress is mediated by a transcription factor known as heat shock factor 1 (HSF1). HSF1 is present in unstressed metazoan cells as a monomer with low affinity for DNA, and upon exposure to stress it is converted to an ‘active’ homotrimer that binds the promoters of heat shock genes with high affinity and induces their transcription. The conversion of HSF1 to its active form is hypothesized to be a multistep process involving physical changes in the HSF1 molecule and the possible translocation of HSF1 from the cytoplasm to the nucleus. While all studies to date have found active HSF1 to be a nuclear protein, there have been conflicting reports on whether the inactive form of HSF is predominantly a cytoplasmic or nuclear protein. In this study, we have made antibodies against human HSF1 and have reexamined its localization in unstressed and heat-shocked human HeLa and A549 cells, and in green monkey Vero cells. Biochemical fractionation of heat-shocked HeLa cells followed by western blot analysis showed that HSF1 was mostly found in the nuclear fraction. In extracts made from unshocked cells, HSF1 was predominantly found in the cytoplasmic fraction using one fractionation procedure, but was distributed approximately equally between the cytoplasmic and nuclear fractions when a different procedure was used. Immunofluorescence microscopy revealed that HSF1 was predominantly a nuclear protein in both heat shocked and unstressed cells. Quantification of HSF1 staining showed that approximately 80% of HSF1 was present in the nucleus both before and after heat stress. These results suggest that HSF1 is predominantly a nuclear protein prior to being exposed to stress, but has low affinity for the nucleus and is easily extracted using most biochemical fractionation procedures. These results also imply that HSF1 translocation is probably not part of the multistep process in HSF1 activation for many cell types.


2008 ◽  
Vol 7 (9) ◽  
pp. 1573-1581 ◽  
Author(s):  
Seona Thompson ◽  
Nirvana J. Croft ◽  
Antonis Sotiriou ◽  
Hugh D. Piggins ◽  
Susan K. Crosthwaite

ABSTRACT Appropriate responses of organisms to heat stress are essential for their survival. In eukaryotes, adaptation to high temperatures is mediated by heat shock transcription factors (HSFs). HSFs regulate the expression of heat shock proteins, which function as molecular chaperones assisting in protein folding and stability. In many model organisms a great deal is known about the products of hsf genes. An important exception is the filamentous fungus and model eukaryote Neurospora crassa. Here we show that two Neurospora crassa genes whose protein products share similarity to known HSFs play different biological roles. We report that heat shock factor 1 (hsf1) is an essential gene and that hsf2 is required for asexual development. Conidiation may be blocked in the hsf2 knockout (hsf2 KO ) strain because HSF2 is an integral element of the conidiation pathway or because it affects the availability of protein chaperones. We report that genes expressed during conidiation, for example fluffy, conidiation-10, and repressor of conidiation-1 show wild-type levels of expression in a hsf2 KO strain. However, consistent with the lack of macroconidium development, levels of eas are much reduced. Cultures of the hsf2 KO strain along with two other aconidial strains, the fluffy and aconidial-2 strains, took longer than the wild type to recover from heat shock. Altered expression profiles of hsp90 and a putative hsp90-associated protein in the hsf2 KO strain after exposure to heat shock may in part account for its reduced ability to cope with heat stress.


Shock ◽  
2006 ◽  
Vol 25 (Supplement 1) ◽  
pp. 63
Author(s):  
P. E. Wischmeyer ◽  
A. Morrison ◽  
K. Singleton ◽  
K. Odoms ◽  
H. R. Wong

Sign in / Sign up

Export Citation Format

Share Document