Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation

2005 ◽  
Vol 288 (5) ◽  
pp. R1256-R1263 ◽  
Author(s):  
Jeffrey M. Purkerson ◽  
George J. Schwartz

Several carbonic anhydrase (CA) isoforms are associated with plasma membranes. It is probable that these enzymes interact with anion transporters to facilitate the movement of HCO3− into or out of the cell. A better knowledge of CA isoform expression in a given tissue would facilitate a systematic examination of any associations with such transporters. We examined the expression of CAs IV, IX, XII, and XIV mRNAs in rabbit tissues, including kidney, heart, lung, skeletal muscle, liver, pancreas, gall bladder, stomach, small intestine, colon, and spleen, using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). CA IV mRNA was mainly in kidney, heart, lung, colon, and gall bladder. CA IX mRNA was restricted to stomach, gall bladder, duodenum, and early jejunum. CA XII mRNA was found in kidney and colon. CA XIV mRNA was localized to heart, lung, skeletal muscle, and liver. The data indicate that there are different patterns of CA expression in various tissues: CA IX was expressed in the proximal gastrointestinal tract, whereas CA XII and CA IV were more distal. CA IV and CA XII are important kidney isoforms. CA XIV was abundant in metabolically active tissues such as liver, heart, lung, and skeletal muscle. Some significant species differences were noted in the expression of some of these isoforms; for example, CA XIV is not expressed in rabbit kidney, despite being abundant in mouse kidney. Maturational studies showed that the expression of CA IX mRNA and protein increased markedly with weaning (∼3–4 postnatal wk) and was well correlated with the maturational expression of the α-subunit of the gastric H+,K+-ATPase, suggesting that function of CA IX and the gastric H+ pump might be linked in the digestion of adult foodstuffs. The unique pattern of membrane-bound CA isoforms suggests different functional associations with transporters, depending on the physiological demands on the tissue.

1985 ◽  
Vol 59 (2) ◽  
pp. 548-558 ◽  
Author(s):  
C. Geers ◽  
G. Gros ◽  
A. Gartner

We report here 1) the synthesis and properties of a new macromolecular carbonic anhydrase inhibitor, Prontosil-dextran, 2) its application to determine the localization of a previously described extracellular carbonic anhydrase in skeletal muscle, and 3) the application of a recently published histochemical technique using dansylsulfonamide to the same problem. Stable macromolecular inhibitors of molecular weights of 5,000, 100,000 and 1,000,000 were produced by covalently coupling the sulfonamide Prontosil to dextrans. Their inhibition constants towards bovine carbonic anhydrase II are 1–2 X 10(-7) M. The Prontosil-dextrans, PD 5,000, PD 100,000, and PD 1,000,000, were used in studies of the washout of H14CO3-) from the perfused rabbit hindlimb. This washout is slow due to the presence of an extracellular carbonic anhydrase and can be markedly accelerated by PD 5,000 but not by PD 100,000 and PD 1,000,000. Since PD 5,000 is accessible to the entire extracellular space and PD 100,000 and PD 1,000,000 are confined to the intravascular space, we conclude that the extracellular carbonic anhydrase of skeletal muscle is located in the interstitium. The histochemical studies show a strong staining of the sarcolemma of the muscle fibers with high oxidative capacity. It appears likely, therefore, that the extracellular carbonic anhydrase of skeletal muscle is associated with muscle plasma membranes with its active site directed toward the interstitial space.


2013 ◽  
Vol 142 (4) ◽  
pp. 327-345 ◽  
Author(s):  
Torben Clausen

During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+.


1999 ◽  
Vol 344 (2) ◽  
pp. 385-390 ◽  
Author(s):  
Weiping JIANG ◽  
Dwijendra GUPTA

The secreted carbonic anhydrase (CA VI) is believed to be one of the oldest mammalian CAs in evolutionary terms. To elucidate its gene structure and compare it with other members of the α-CA family, we cloned genomic fragments encoding the bovine CA6 gene and determined its exon/intron organization. The gene spans approx. 25 kb and consists of eight exons and seven introns. Exon 1 encodes the 5′ untranslated region, the signal peptide and the N-terminus of the mature enzyme. Exon 8 encodes the 3′ untranslated region and the C-terminal extension that is unique to CA VI. Exons 2-7 encode the CA domain, which shows significant sequence similarity to other CAs. Two distinct groups exist in the α-CA family on the basis of a comparison of the known gene structures. One group consists of the cytoplasmic (CA I, II, III and VII) and mitochondrial (CA V) members. The other group consists of the membrane-bound (CA IV and IX) and secreted (CA VI) members. In particular, the seven exon/intron boundaries in the CA domain of the CA6 gene are conserved in the CA9 gene, which encodes the multidomain protein CA IX that is overexpressed in tumours and has transforming potential.


2001 ◽  
Vol 280 (2) ◽  
pp. R365-R375 ◽  
Author(s):  
Orna Rosen ◽  
Carlos Suarez ◽  
Victor L. Schuster ◽  
Luc P. Brion

Carbonic anhydrase (CA) facilitates acid-base transport in several tissues. Acidosis upregulates membrane-bound SDS-resistant hydratase activity in various tissues and CA IV mRNA in rabbit kidney. This study was designed to assess whether the expression of membrane-bound CA IV isozyme in mouse placenta is regulated developmentally and by maternal ammonium chloride loading at the end of pregnancy. For this purpose we used Northern blot analysis, Western blots of microsomal membranes, and immunocytochemistry. The expression of CA IV mRNA on Northern blots tripled from day 11 to day 15 and then remained stable until the end of pregnancy. Expression of CA IV immunoreactive protein on Western blot tripled from day 11 to day 15 and decreased almost to baseline by day 19. Strong staining for CA IV was detected by immunocytochemistry in labyrinthine trophoblast, in the endodermal layer of the yolk sac (both intra- and extraplacental) and in the uterine epithelium. Weak staining was observed in most fetal endothelial cells at 11 days but not later in gestation. Maternal acidosis did not upregulate the expression of CA IV mRNA or CA IV immunoreactive protein. Thus CA IV expression in mouse placenta is developmentally regulated. Maternal acidosis during the last quarter of pregnancy does not upregulate CA IV mRNA or CA IV immunoreactive protein.


1998 ◽  
Vol 46 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Juha Saarnio ◽  
Seppo Parkkila ◽  
Anna-Kaisa Parkkila ◽  
Abdul Waheed ◽  
Matthew C. Casey ◽  
...  

MN/CA IX is a recently discovered member of the carbonic anhydrase (CA) gene family that has been identified in the plasma membranes of certain tumor and epithelial cells and found to promote cell proliferation when transfected into NIH3T3 cells. This study presents localization of MN/CA IX in human gut and compares its distribution to those of CA I, II, and IV, which are known to be expressed in the intestinal epithelium. The specificity of the monoclonal antibody for MN/CA IX was confirmed by Western blots and immunostaining of COS-7 cells transfected with MN/CA IX cDNA. Immunohistochemical stainings of human gut revealed prominent polarized staining for MN/CA IX in the basolateral surfaces of the enterocytes of duodenum and jejunum, the reaction being most intense in the crypts. A moderate reaction was also seen in the crypts of ileal mucosa, whereas the staining became generally weaker in the large intestine. The results indicate isozyme-specific regulation of MN/CA IX expression along the cranial–caudal axis of the human gut and place the protein at the sites of rapid cell proliferation. The unique localization of MN/CA IX on the basolateral surfaces of proliferating crypt enterocytes suggests that it might serve as a ligand or a receptor for another protein that regulates intercellular communication or cell proliferation. Furthermore, MN/CA IX has a completely conserved active site domain of CAs suggesting that it could also participate in carbon dioxide/bicarbonate homeostasis.


2000 ◽  
Vol 278 (4) ◽  
pp. H1335-H1344 ◽  
Author(s):  
Anja Sylvia Knüppel-Ruppert ◽  
Gerolf Gros ◽  
Wolfgang Harringer ◽  
Hans-Peter Kubis

To clarify the controversial question of cell-specific distribution of carbonic anhydrase (CA) in the heart, endothelial cells and cardiomyocytes were isolated from porcine and human hearts and were characterized with cell-specific markers. CA activity was found in the microsomal fraction of both cell types. It was shown by Triton X-114 phase separation that both cell types possess a membrane-bound form of CA. These CAs share the same mechanism of membrane-anchoring via glycosylphosphatidylinositol (GPI), which excludes identity with transmembrane isoforms CA IX or CA XII. Western blotting analysis of human microsomes with anti-human CA IV antibodies revealed a marked difference in immunoreactivity. Endothelial CA activity resulted in 11-fold stronger CA IV bands compared with identical amounts of myocytic CA activity, indicating that cardiac endothelium and cardiomyocytes possess immunologically distinct forms of CA. We conclude that in human hearts CA IV is associated with the endothelium, whereas most of the CA in myocytes is not identical with one of the known CA isozymes. This suggests that cardiomyocytic CA is a novel isozyme.


2019 ◽  
Vol 78 (12) ◽  
pp. 1081-1088
Author(s):  
Rati Chkheidze ◽  
Patrick J Cimino ◽  
Kimmo J Hatanpaa ◽  
Charles L White ◽  
Manuel Ferreira ◽  
...  

Abstract Clear cell, microcytic, and angiomatous meningiomas are 3 vasculature-rich variants with overlapping morphological features but different prognostic and treatment implications. Distinction between them is not always straightforward. We compared the expression patterns of the hypoxia marker carbonic anhydrase IX (CA-IX) in meningiomas with predominant clear cell (n = 15), microcystic (n = 9), or angiomatous (n = 11) morphologies, as well as 117 cases of other World Health Organization recognized histological meningioma variants. Immunostaining for SMARCE1 protein, whose loss-of-function has been associated with clear cell meningiomas, was performed on all clear cell meningiomas, and selected variants of meningiomas as controls. All clear cell meningiomas showed absence of CA-IX expression and loss of nuclear SMARCE1 expression. All microcystic and angiomatous meningiomas showed diffuse CA-IX immunoreactivity and retained nuclear SMARCE1 expression. In other meningioma variants, CA-IX was expressed in a hypoxia-restricted pattern and was highly associated with atypical features such as necrosis, small cell change, and focal clear cell change. In conclusion, CA-IX may serve as a useful diagnostic marker in differentiating clear cell, microcystic, and angiomatous meningiomas.


2021 ◽  
Vol 22 (11) ◽  
pp. 6098
Author(s):  
Ebru Temiz ◽  
Ismail Koyuncu ◽  
Mustafa Durgun ◽  
Murat Caglayan ◽  
Ataman Gonel ◽  
...  

Carbonic anhydrase IX (CAIX) is a hypoxia-related protein that plays a role in proliferation in solid tumours. However, how CAIX increases proliferation and metastasis in solid tumours is unclear. The objective of this study was to investigate how a synthetic CAIX inhibitor triggers apoptosis in the HeLa cell line. The intracellular effects of CAIX inhibition were determined with AO/EB, AnnexinV-PI, and γ-H2AX staining; measurements of intracellular pH (pHi), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP); and analyses of cell cycle, apoptotic, and autophagic modulator gene expression (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin, and LC3), caspase protein level (pro-caspase 3 and cleaved caspase-3, -8, -9), cleaved PARP activation, and CAIX protein level. Sulphonamide CAIX inhibitor E showed the lowest IC50 and the highest selectivity index in CAIX-positive HeLa cells. CAIX inhibition changed the morphology of HeLa cells and increased the ratio of apoptotic cells, dramatically disturbing the homeostasis of intracellular pHi, MMP and ROS levels. All these phenomena consequent to CA IX inhibition triggered apoptosis and autophagy in HeLa cells. Taken together, these results further endorse the previous findings that CAIX inhibitors represent an important therapeutic strategy, which is worth pursuing in different cancer types, considering that presently only one sulphonamide inhibitor, SLC-0111, has arrived in Phase Ib/II clinical trials as an antitumour/antimetastatic drug.


2017 ◽  
Vol 65 (1) ◽  
pp. 50 ◽  
Author(s):  
Muhammad Yousuf Ali ◽  
Ana Pavasovic ◽  
Peter B. Mather ◽  
Peter J. Prentis

Carbonic anhydrase (CA), Na+/K+-ATPase (NKA) and Vacuolar-type H+-ATPase (HAT) play vital roles in osmoregulation and pH balance in decapod crustaceans. As variable pH levels have a significant impact on the physiology of crustaceans, it is crucial to understand the mechanisms by which an animal maintains its internal pH. We examined expression patterns of cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of freshwater crayfish, Cherax quadricarinatus, at three pH levels – 6.2, 7.2 (control) and 8.2 – over 24 h. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer. Expression increased at low pH after 12 h, and reached its maximum level by 24 h. CAg showed a significant increase in expression at 6 h after transfer at low pH. Expression of NKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated for up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h after transfer to low pH and remained significantly elevated throughout the experiment. Overall, CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish.


Sign in / Sign up

Export Citation Format

Share Document