Activity-dependent feedback modulation of spike patterning of supraoptic nucleus neurons by endogenous adenosine

2006 ◽  
Vol 291 (1) ◽  
pp. R83-R90 ◽  
Author(s):  
P. M. Bull ◽  
C. H. Brown ◽  
J. A. Russell ◽  
M. Ludwig

Neuropeptide secretion from the dendrites of hypothalamic magnocellular supraoptic nucleus (SON) neurons contributes to the regulation of neuronal activity patterning, which ultimately determines their peptide output from axon terminals in the posterior pituitary gland. SON dendrites also secrete a number of other neuromodulators, including ATP. ATP degrades to adenosine in the extracellular space to complement transported adenosine acting on pre- and postsynaptic SON A1 receptors to reduce neuronal excitability, measured in vitro. To assess adenosine control of electrical activity in vivo, we made extracellular single-unit recordings of the electrical activity of SON neurons in anesthetized male rats. Microdialysis application (retrodialysis) of the A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT) increased phasic vasopressin cell intraburst firing rates progressively over the first 5 s by 4.5 ± 1.6 Hz ( P < 0.05), and increased burst duration by 293 ± 64% ( P < 0.05). Hazard function plots were generated from interval interspike histograms and revealed that these effects were associated with increased postspike excitability. In contrast, CPT had no effect on the firing rates and hazard function plot profiles of continuously active vasopressin and oxytocin cells. However, CPT significantly increased clustering of spikes, as quantified by the index of dispersion, in oxytocin cells and continuously active vasopressin cells (by 267 ± 113% and 462 ± 67%, respectively, P < 0.05). Indeed, in 4 of 5 continuously active vasopressin cells, CPT induced a pseudophasic activity pattern. Together, these results indicate that endogenous adenosine is involved in the local control of SON cell activity in vivo.

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xin Wang ◽  
Xing-Liang Yang ◽  
Wei-Lin Kong ◽  
Meng-Liu Zeng ◽  
Lin Shao ◽  
...  

Abstract Background Neonatal hypoxic-ischemic brain damage (HIBD), a leading cause of neonatal mortality, has intractable sequela such as epilepsy that seriously affected the life quality of HIBD survivors. We have previously shown that ion channel dysfunction in the central nervous system played an important role in the process of HIBD-induced epilepsy. Therefore, we continued to validate the underlying mechanisms of TRPV1 as a potential target for epilepsy. Methods Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. Primarily cultured astrocytes were used to assess the expression of TRPV1, glial fibrillary acidic protein (GFAP), cytoskeletal rearrangement, and inflammatory cytokines by using Western blot, q-PCR, and immunofluorescence. Furthermore, brain electrical activity in freely moving mice was recorded by electroencephalography (EEG). TRPV1 current and neuronal excitability were detected by whole-cell patch clamp. Results Astrocytic TRPV1 translocated to the membrane after OGD. Mechanistically, astrocytic TRPV1 activation increased the inflow of Ca2+, which promoted G-actin polymerized to F-actin, thus promoted astrocyte migration after OGD. Moreover, astrocytic TRPV1 deficiency decreased the production and release of pro-inflammatory cytokines (TNF, IL-6, IL-1β, and iNOS) after OGD. It could also dramatically attenuate neuronal excitability after OGD and brain electrical activity in HIBD mice. Behavioral testing for seizures after HIBD revealed that TRPV1 knockout mice demonstrated prolonged onset latency, shortened duration, and decreased seizure severity when compared with wild-type mice. Conclusions Collectively, TRPV1 promoted astrocyte migration thus helped the infiltration of pro-inflammatory cytokines (TNF, IL-1β, IL-6, and iNOS) from astrocytes into the vicinity of neurons to promote epilepsy. Our study provides a strong rationale for astrocytic TRPV1 to be a therapeutic target for anti-epileptogenesis after HIBD.


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


1985 ◽  
Vol 249 (3) ◽  
pp. E276-E280 ◽  
Author(s):  
W. S. Evans ◽  
R. J. Krieg ◽  
E. R. Limber ◽  
D. L. Kaiser ◽  
M. O. Thorner

The effects of gender and the gonadal hormone environment on basal and stimulated growth hormone (GH) release by dispersed and continuously perifused rat anterior pituitary cells were examined. Cells from intact male and diestrus day 2 female rats and from castrate male rats either untreated or treated with testosterone (T) or 17 beta-estradiol (E2) were used. Basal GH release (ng/min per 10(7) cells; mean +/- SE) by cells from diestrus day 2 female rats was less than by cells from castrate rats treated with T (4.3 +/- 0.6 vs. 11.4 +/- 2.7, respectively; P less than 0.025). No other differences in basal release were detected. Concentration-response relationships were documented between human GH-releasing factor 40 (hGRF-40; 0.03-100 nM given as 2.5-min pulses every 27.5 min) and GH release. Mean (+/- SE) overall GH release (ng/min per 10(7) cells) above base line was greater by cells from intact male rats (496 +/- 92) than by cells from castrate (203 +/- 37.3; P less than 0.0001), castrate and T-treated (348 +/- 52.8; P = 0.008), or castrate and E2-treated (58.1 +/- 6.8; P less than 0.001) male rats or by diestrus day 2 rats (68.6 +/- 9.5; P = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 59 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Graciela S. Díaz-Torga ◽  
Damasia Becú-Villalobos ◽  
Carlos Libertun

2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
M. K. Gill-Sharma

In the last 20 years, a pituitary-hypothalamus tissue culture system with intact neural and portal connections has been developed in our lab and used to understand the feedback mechanisms that regulate the secretions of adenohypophyseal hormones and fertility of male rats. In the last decade, several in vivo rat models have also been developed in our lab with a view to substantiate the in vitro findings, in order to delineate the role of pituitary hormones in the regulation of fertility of male rats. These studies have relied on both surgical and pharmacological interventions to modulate the secretions of gonadotropins and testosterone. The interrelationship between the circadian release of reproductive hormones has also been ascertained in normal men. Our studies suggest that testosterone regulates the secretion of prolactin through a long feedback mechanism, which appears to have been conserved from rats to humans. These studies have filled in a major lacuna pertaining to the role of prolactin in male reproductive physiology by demonstrating the interdependence between testosterone and prolactin. Systemic levels of prolactin play a deterministic role in the mechanism of chromatin condensation during spermiogenesis.


2016 ◽  
Vol 60 (8) ◽  
pp. 4830-4839 ◽  
Author(s):  
Christopher M. Tan ◽  
Charles J. Gill ◽  
Jin Wu ◽  
Nathalie Toussaint ◽  
Jingjun Yin ◽  
...  

ABSTRACTOxabicyclooctane-linked novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of recently described antibacterial agents with broad-spectrum activity. NBTIs dually inhibit the clinically validated bacterial targets DNA gyrase and topoisomerase IV and have been shown to bind distinctly from known classes of antibacterial agents directed against these targets. Herein we report the molecular, cellular, andin vivocharacterization of AM-8722 as a representative N-alkylated-1,5-naphthyridone left-hand-side-substituted NBTI. Consistent with its mode of action, macromolecular labeling studies revealed a specific effect of AM-8722 to dose dependently inhibit bacterial DNA synthesis. AM-8722 displayed greater intrinsic enzymatic potency than levofloxacin versus both DNA gyrase and topoisomerase IV fromStaphylococcus aureusandEscherichia coliand displayed selectivity against human topoisomerase II. AM-8722 was rapidly bactericidal and exhibited whole-cell activity versus a range of Gram-negative and Gram-positive organisms, with no whole-cell potency shift due to the presence of DNA or human serum. Frequency-of-resistance studies demonstrated an acceptable rate of resistance emergencein vitroat concentrations 16- to 32-fold the MIC. AM-8722 displayed acceptable pharmacokinetic properties and was shown to be efficacious in mouse models of bacterial septicemia. Overall, AM-8722 is a selective and potent NBTI that displays broad-spectrum antimicrobial activityin vitroandin vivo.


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


1995 ◽  
Vol 78 (6) ◽  
pp. 2272-2278 ◽  
Author(s):  
H. Yoshioka ◽  
H. Miyake ◽  
D. S. Smith ◽  
B. Chance ◽  
T. Sawada ◽  
...  

The effects of hypercapnia on cerebral electrical activity and mitochondrial oxidative phosphorylation were studied in the anesthetized neonatal dog by using the electrocorticogram (ECoG) and 31P-magnetic resonance spectroscopy. Three levels of hypercapnia with arterial PCO2 values of approximately 70, 100, and 140 Torr reduced the intracellular pH of the brain from 7.11 to 6.99, 6.87, and 6.76, respectively. These levels of hypercapnia also reduced ADP concentration ([ADP]) from 21.5 to 18.1, 14.8, and 12.9 microM as well as the average ECoG power output by 20, 30, and 40%. A Michaelis-Menten relationship for the mitochondrial respiratory enzymes was fitted with [ADP] and the change in the average ECoG. The result suggests that mitochondrial respiration is regulated by [ADP] and that the in vivo Michaelis-Menten constant for ADP was 21 microM, a value close to the in vitro value. The mitochondrial maximal reaction velocity was reduced by only 10% during hypercapnia and showed no relationship with the degree of acidosis, suggesting that mitochondrial respiratory enzymes are not responsible for the inhibition of the brain electrical activity.


1992 ◽  
Vol 3 (suppl b) ◽  
pp. 123-127 ◽  
Author(s):  
Hans-Georg Klingemann ◽  
Heather Deal ◽  
Dianne Reid ◽  
Connie J Eaves

Despite the use of high dose chemoradiotherapy for the treatment of acute leukemia. relapse continues to be a major cause of death in patients given an autologous bone marrow transplant. Further augmentation of pretransplant chemotherapy causes life threatening toxicity to nonhematopoietic tissues and the effectiveness of currently available ex vivo purging methods in reducing the relapse rate is unclear. Recently, data from experimental models have suggested that bone marrow-derived lymphokine (IL-2)-activated killer (BM-LAK) cells might be used to eliminate residual leukemic cells both in vivo and in vitro. To evaluate this possibility clinically, a procedure was developed for culturing whole marrow harvests with IL-2 prior to use as autografts, and a number of variables examined that might affect either the generation of BM-LAK cells or the recovery of the primitive hematopoietic cells. The use of Dexter long term culture (LTC) conditions, which expose the cells to horse serum and hydrocortisone. supported LAK cell generation as effectively as fetal calf serum (FCS) -containing medium in seven-day cultures. Maintenance of BM-LAK cell activity after a further seven days of culture in the presence of IL-2 was also tested. As in the clinical setting. patients would receive IL-2 in vivo for an additional week immediately following infusion of the cultured marrow autograft. Generation ofBM-LAK activity was dependent on the presence of IL-2 and could be sustained by further incubation in medium containing IL-2. Primitive hematopoietic cells were quantitated by measuring the number of in vitro colony-forming progenitors produced after five weeks in secondary Dexter-type LTC. Maintenance of these 'LTC-initiating cells' was unaffected by lL-2 in the culture medium. These results suggest that LAK cells can be generated efficien tly in seven-day marrow autograft cultures containing IL-2 under conditions that allow the most primitive human hematopoietic cells currently detectable to be maintained.


Sign in / Sign up

Export Citation Format

Share Document