scholarly journals Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states

2010 ◽  
Vol 299 (3) ◽  
pp. R728-R739 ◽  
Author(s):  
Barbara E. Hasek ◽  
Laura K. Stewart ◽  
Tara M. Henagan ◽  
Anik Boudreau ◽  
Natalie R. Lenard ◽  
...  

Dietary methionine restriction (MR) is a mimetic of chronic dietary restriction (DR) in the sense that MR increases rodent longevity, but without food restriction. We report here that MR also persistently increases total energy expenditure (EE) and limits fat deposition despite increasing weight-specific food consumption. In Fischer 344 (F344) rats consuming control or MR diets for 3, 9, and 20 mo, mean EE was 1.5-fold higher in MR vs. control rats, primarily due to higher EE during the night at all ages. The day-to-night transition produced a twofold higher heat increment of feeding (3.0°C vs. 1.5°C) in MR vs. controls and an exaggerated increase in respiratory quotient (RQ) to values greater than 1, indicative of the interconversion of glucose to lipid by de novo lipogenesis. The simultaneous inhibition of glucose utilization and shift to fat oxidation during the day was also more complete in MR (RQ ∼0.75) vs. controls (RQ ∼0.85). Dietary MR produced a rapid and persistent increase in uncoupling protein 1 expression in brown (BAT) and white adipose tissue (WAT) in conjunction with decreased leptin and increased adiponectin levels in serum, suggesting that remodeling of the metabolic and endocrine function of adipose tissue may have an important role in the overall increase in EE. We conclude that the hyperphagic response to dietary MR is matched to a coordinated increase in uncoupled respiration, suggesting the engagement of a nutrient-sensing mechanism, which compensates for limited methionine through integrated effects on energy homeostasis.

2018 ◽  
Vol 19 (10) ◽  
pp. 2904 ◽  
Author(s):  
Christian Carpéné ◽  
Saioa Gómez-Zorita ◽  
Alice Chaplin ◽  
Josep Mercader

Phenelzine has been suggested to have an antiobesity effect by inhibiting de novo lipogenesis, which led us to investigate the metabolic effects of oral chronic phenelzine treatment in high-sucrose-drinking mice. Sucrose-drinking mice presented higher body weight gain and adiposity versus controls. Phenelzine addition did not decrease such parameters, even though fat pad lipid content and weights were not different from controls. In visceral adipocytes, phenelzine did not impair insulin-stimulated de novo lipogenesis and had no effect on lipolysis. However, phenelzine reduced the mRNA levels of glucose transporters 1 and 4 and phosphoenolpyruvate carboxykinase in inguinal white adipose tissue (iWAT), and altered circulating levels of free fatty acids (FFA) and glycerol. Interestingly, glycemia was restored in phenelzine-treated mice, which also had higher insulinaemia. Phenelzine-treated mice presented higher rectal temperature, which was associated to reduced mRNA levels of uncoupling protein 1 in brown adipose tissue. Furthermore, unlike sucrose-drinking mice, hepatic malondialdehyde levels were not altered. In conclusion, although de novo lipogenesis was not inhibited by phenelzine, the data suggest that the ability to re-esterify FFA is impaired in iWAT. Moreover, the effects on glucose homeostasis and oxidative stress suggest that phenelzine could alleviate obesity-related alterations and deserves further investigation in obesity models.


2015 ◽  
Vol 112 (37) ◽  
pp. 11630-11635 ◽  
Author(s):  
Yan Wang ◽  
Markey C. McNutt ◽  
Serena Banfi ◽  
Michael G. Levin ◽  
William L. Holland ◽  
...  

Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3−/− mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3−/− animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3−/− mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laura Pajed ◽  
Ulrike Taschler ◽  
Anna Tilp ◽  
Peter Hofer ◽  
Petra Kotzbeck ◽  
...  

AbstractModulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.


2010 ◽  
Vol 299 (3) ◽  
pp. R740-R750 ◽  
Author(s):  
Eric P. Plaisance ◽  
Tara M. Henagan ◽  
Haley Echlin ◽  
Anik Boudreau ◽  
Kasey L. Hill ◽  
...  

Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). β-adrenergic receptors (β-AR) serve as conduits for sympathetic input to adipose tissue, but their role in mediating the effects of MR on energy homeostasis is unclear. Energy intake, weight, and adiposity were modestly higher in β3-AR−/− mice on the Control diet compared with wild-type (WT) mice, but the hyperphagic response to the MR diet and the reduction in fat deposition did not differ between the genotypes. The absence of β3-ARs also did not diminish the ability of MR to increase total EE and plasma adiponectin or decrease leptin mRNA, but it did block the MR-dependent increase in UCP1 mRNA in BAT but not WAT. In a further study, propranolol was used to antagonize remaining β-adrenergic input (β1- and β2-ARs) in β3-AR−/− mice, and this treatment blocked >50% of the MR-induced increase in total EE and UCP1 induction in both BAT and WAT. We conclude that signaling through β-adrenergic receptors is a component of the mechanism used by dietary MR to increase EE, and that β1- and β2-ARs are able to substitute for β3-ARs in mediating the effect of dietary MR on EE. These findings are consistent with the involvement of both UCP1-dependent and -independent mechanisms in the physiological responses affecting energy balance that are produced by dietary MR.


2019 ◽  
Vol 40 (4) ◽  
pp. 1092-1107 ◽  
Author(s):  
Julian M Yabut ◽  
Justin D Crane ◽  
Alexander E Green ◽  
Damien J Keating ◽  
Waliul I Khan ◽  
...  

Abstract Serotonin is a phylogenetically ancient biogenic amine that has played an integral role in maintaining energy homeostasis for billions of years. In mammals, serotonin produced within the central nervous system regulates behavior, suppresses appetite, and promotes energy expenditure by increasing sympathetic drive to brown adipose tissue. In addition to these central circuits, emerging evidence also suggests an important role for peripheral serotonin as a factor that enhances nutrient absorption and storage. Specifically, glucose and fatty acids stimulate the release of serotonin from the duodenum, promoting gut peristalsis and nutrient absorption. Serotonin also enters the bloodstream and interacts with multiple organs, priming the body for energy storage by promoting insulin secretion and de novo lipogenesis in the liver and white adipose tissue, while reducing lipolysis and the metabolic activity of brown and beige adipose tissue. Collectively, peripheral serotonin acts as an endocrine factor to promote the efficient storage of energy by upregulating lipid anabolism. Pharmacological inhibition of serotonin synthesis or signaling in key metabolic tissues are potential drug targets for obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).


2004 ◽  
Vol 286 (4) ◽  
pp. E577-E588 ◽  
Author(s):  
A. Strawford ◽  
F. Antelo ◽  
M. Christiansen ◽  
M. K. Hellerstein

The turnover of adipose tissue components (lipids and cells) and the pathways of adipose lipid deposition have been difficult to measure in humans. We apply here a 2H2O long-term labeling technique for concurrent measurement of adipose-triglyceride (TG) turnover, cell (DNA) proliferation, and de novo lipogenesis (DNL). Healthy subjects drank 2H2O (70 ml/day) for 5-9 wk. Subcutaneous adipose tissue aspirates were taken (gluteal, thigh, and flank depots). Deuterium incorporation into TG glycerol (representing all-source TG synthesis), TG palmitate (representing DNL, by mass isotopomer distribution analysis), and DNA (representing cell proliferation) was measured by gas chromatography-mass spectrometry. Subjects tolerated the protocol well, and body 2H2O enrichments were stable. Mean TG-glycerol fractional synthesis was 0.12 (i.e., 12%) with a range of 0.03-0.32 after 5 wk and 0.20 (range 0.08-0.49) after 9 wk (TG half-life 200-270 days). Label decay measurements 5-8 mo after discontinuing 2H2O gave similar turnover estimates. Net lipolysis (TG turnover) was 50-60 g/day. DNL contribution to adipose-TG was 0.04 after 9 wk, representing ∼20% of newly deposited TG. Cell proliferation was 0.10-0.17 after 9 wk (half-life 240-425 days). In summary, long-term 2H2O administration to human subjects allows measurement of the dynamics of adipose tissue components. Turnover of all elements is slow, and DNL contributes ∼20% of new TG.


1987 ◽  
Vol 253 (6) ◽  
pp. E664-E669 ◽  
Author(s):  
C. Chascione ◽  
D. H. Elwyn ◽  
M. Davila ◽  
K. M. Gil ◽  
J. Askanazi ◽  
...  

Rates of synthesis, from [14C]glucose, of fatty acids (de novo lipogenesis) and glycerol (triglyceride synthesis) were measured in biopsies of adipose tissue from nutritionally depleted patients given low- or high-carbohydrate intravenous nutrition. Simultaneously, energy expenditure and whole-body lipogenesis were measured by indirect calorimetry. Rates of whole-body lipogenesis were zero on the low-carbohydrate diet and averaged 1.6 g.kg-1.day-1 on the high-carbohydrate diet. In vitro rates of triglyceride synthesis increased 3-fold going from the low to the high intake; rates of fatty acid synthesis increased approximately 80-fold. In vitro, lipogenesis accounted for less than 0.1% of triglyceride synthesis on the low intake and 4% on the high intake. On the high-carbohydrate intake, in vitro rates of triglyceride synthesis accounted for 61% of the rates of unidirectional triglyceride synthesis measured by indirect calorimetry. In vitro rates of lipogenesis accounted for 7% of whole-body lipogenesis. Discrepancies between in vitro rates of fatty acid synthesis from glucose, compared with acetate and citrate, as reported by others, suggest that in depleted patients on hypercaloric high-carbohydrate diets, adipose tissue may account for up to 40% of whole-body lipogenesis.


Diabetes ◽  
2012 ◽  
Vol 62 (2) ◽  
pp. 362-372 ◽  
Author(s):  
H. Marcelino ◽  
C. Veyrat-Durebex ◽  
S. Summermatter ◽  
D. Sarafian ◽  
J. Miles-Chan ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 213
Author(s):  
Bárbara María Varela-Rodríguez ◽  
Paula Juiz-Valiña ◽  
Luis Varela ◽  
Elena Outeiriño-Blanco ◽  
Susana Belén Bravo ◽  
...  

Bariatric surgery (BS) is the most effective treatment for obesity and has a positive impact on cardiometabolic risk and in the remission of type 2 diabetes. Following BS, the majority of fat mass is lost from the subcutaneous adipose tissue depot (SAT). However, the changes in this depot and functions and as well as its relative contribution to the beneficial effects of this surgery are still controversial. With the aim of studying altered proteins and molecular pathways in abdominal SAT (aSAT) after body weight normalization induced by BS, we carried out a proteomic approach sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis. These results were complemented by Western blot, electron microscopy and RT-qPCR. With all of the working tools mentioned, we confirmed that after BS, up-regulated proteins were associated with metabolism, the citric acid cycle and respiratory electron transport, triglyceride catabolism and metabolism, formation of ATP, pyruvate metabolism, glycolysis/gluconeogenesis and thermogenesis among others. In contrast, proteins with decreased values are part of the biological pathways related to the immune system. We also confirmed that obesity caused a significant decrease in mitochondrial density and coverage, which was corrected by BS. Together, these findings reveal specific molecular mechanisms, genes and proteins that improve adipose tissue function after BS characterized by lower inflammation, increased glucose uptake, higher insulin sensitivity, higher de novo lipogenesis, increased mitochondrial function and decreased adipocyte size.


Sign in / Sign up

Export Citation Format

Share Document