Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667)

1988 ◽  
Vol 255 (2) ◽  
pp. R243-R247 ◽  
Author(s):  
L. Vico ◽  
D. Chappard ◽  
S. Palle ◽  
A. V. Bakulin ◽  
V. E. Novikov ◽  
...  

Seven male rats were exposed to 7 days of weightlessness in the Soviet mission COSMOS 1667 and compared with seven control rats by bone histomorphometric methods. In proximal tibial metaphysis, the trabecular bone volume was markedly reduced in flight animals. Trabeculae were decreased in number and thickness; this probably leads to alteration of bone mechanical properties. Formation activity (reflected by measurements of osteoid seams) was decreased at trabecular and endosteal levels. Resorption activity (estimated by count of osteoclast number and active resorption surfaces using a histoenzymologic method) remained unchanged. The imbalance between these cellular activities appears to be responsible for the loss of trabecular bone mass. In proximal femoral metaphysis, measurements were performed in an area located under the muscular insertions. The trabecular bone volume, despite a slight decrease in flight rats, was not significantly different from that of control rats. Furthermore, osteoclastic and osteoid parameters were unchanged. Differential responses between these two long bones need additional investigations. In thoracic and lumbar vertebrae no detectable change in bone mass and bone resorption parameters was found.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2200
Author(s):  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Gustavo A. Gomez ◽  
Yian Chen ◽  
Subburaman Mohan

We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.


Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 144-152 ◽  
Author(s):  
M. L. Bouxsein ◽  
M. J. Devlin ◽  
V. Glatt ◽  
H. Dhillon ◽  
D. D. Pierroz ◽  
...  

Activation of β2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether β-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of β-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known β-adrenergic receptors (β-less). Body weight, percent fat, and bone mineral density were significantly higher in male β-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in β-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult β-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male β-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in β-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in β-less compared with WT mice from 8–16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in β-less and WT mice. Altogether, these data indicate that absence of β-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling. Mice lacking ß-adrenergic receptors have increased body weight, bone mineral density, and bone turnover versus controls, but are not protected from bone loss due to deficiency of estrogens..


2015 ◽  
Vol 291 (4) ◽  
pp. 1631-1642 ◽  
Author(s):  
Partha Sinha ◽  
Piia Aarnisalo ◽  
Rhiannon Chubb ◽  
Ingrid J. Poulton ◽  
Jun Guo ◽  
...  

Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3214-3214
Author(s):  
Kate Vandyke ◽  
Andrea Dewar ◽  
Peter Diamond ◽  
Stephen Fitter ◽  
Amanda N Farrugia ◽  
...  

Abstract We have previously shown that the tyrosine kinase inhibitor imatinib mesylate potently inhibits osteoclast formation and activity due, in part, to its specificity for the macrophage colony stimulating factor (M-CSF) receptor, c-fms. We have also shown that imatinib therapy is associated with altered bone remodelling and an increase in trabecular bone volume in chronic myeloid leukaemia patients. In the present study, we examined whether a second-generation tyrosine kinase inhibitor, dasatinib, could similarly inhibit c-fms activation and osteoclastogenesis. The effect of dasatinib on c-fms phosphorylation in human peripheral blood CD14+ mononuclear cells (huCD14+) and mouse bone marrow monocytes (mBM) was assessed using Western blotting. M-CSF activation of c-fms phosphorylation was inhibited at pharmacologically-relevant concentrations (5 nM) in huCD14+ and mBM. We next examined the effects of dasatinib treatment on cell proliferation/survival in M-CSFdependent FDC-fms and mBM cells. Dasatinib treatment resulted in a dose-dependent decrease in FDC-fms (IC50 = 57.8 nM) and mBM (IC50 = 5.0 nM) cell numbers. Similarly, in huCD14+ and mBM cultures stimulated with RANKL and M-CSF, the number of TRAP-positive, multinucleated osteoclasts was significantly reduced in the presence of 20 nM dasatinib in huCD14+ (p < 0.001; IC50 = 10.5 nM) and 10 nM dasatinib in mBM (p < 0.01; IC50 = 8.0 nM), relative to vehicle controls. In addition, there was a dose-dependent decrease in bone resorption by osteoclasts at 2.5 nM dasatinib and higher (p < 0.05; IC50 = 2.4 nM [PBMNC] and 3.5 nM [mBM]). Since signal transduction via c-fms is crucial for osteoclastogenesis, we examined whether inhibition of c-fms by dasatinib could account for these results. Dasatinib decreased proliferation of FDC-c-fms (IC50 = 57.8 nM) and mBM (IC50 = 5.0 nM) cultured with M-CSF, but not IL-3-stimulated FDC-c-fms cells. Furthermore, dasatinib inhibited phosphorylation of c-fms at 5 nM in huCD14+ and mBM, while c-Src was inhibited at 20 nM dasatinib. We next performed a comprehensive investigation of dasatinib’s effects on bone remodelling in a rat model of physiological bone turnover. In this study, 18 adult (8 months old) Sprague Dawley rats were administered dasatinib (5 mg/kg/day) or vehicle control (10% DMSO/90% polyethylene glycol 300 [v/v]) by daily oral gavage. Following 4, 8 and 12 weeks of treatment, 6 animals from each group were sacrificed for serum biochemical analysis, bone morphometry, and histological analysis of tibiae and lumbar vertebrae. While no significant changes in serum calcium levels were observed, hypophosphataemia was induced in dasatinib-treated animals by 4 weeks. Micro-computed tomographic (micro-CT) analysis of a region of cancellous bone at the proximal tibiae, 2.4 mm distal to the growth plate, revealed that trabecular bone volume (BV/TV) was increased in the dasatinib-treated group after 4 weeks of treatment. The increase in BV/TV was attributed to an increase in trabecular number and not an increase in trabecular thickness. Furthermore, there were no observed changes in tibial cortical thickness or in trabecular BV/TV in the lumbar vertebrae. These studies demonstrate that therapeutic concentrations of dasatinib inhibit OC formation and activity in vitro and in vivo and this effect is attributable to an inhibition of signal transduction via c-fms rather than c-Src. The anti-resorpitive properties of dasatinib were further confirmed in a rat model of normal bone remodelling, with dasatinibtreated animals exhibiting an increase in trabecular bone volume. These data suggest that decreased bone resorption is a likely side-effect of dasatinib therapy. In addition, they highlight the possibility that dasatinib may represent a possible treatment for diseases of low bone mass or metastasis-associated bone loss.


2002 ◽  
pp. 431-438 ◽  
Author(s):  
H Oxlund ◽  
M Dalstra ◽  
C Ejersted ◽  
TT Andreassen

OBJECTIVE: The present study addresses the question--can PTH induce formation of trabeculae in areas where cancellous bone has disappeared? Two-year-old male rats were chosen, because in this aged animal model the distal femurs have almost no cancellous bone, and the marrow cavity has reached a substantial dimension. DESIGN: The rats were injected for 56 days with either PTH(1-34), 15 nmol/kg/day (62.5 microg/kg/day), or vehicle. METHODS: Transverse specimens, 2-mm high, were cut from the distal femoral metaphysis. Marrow cavity diameters and cancellous bone trabeculae were analysed by a micro-computerized tomography scanner. The cancellous bone within the cortical and endocortical rim of each specimen was submitted to a biomechanical compression test. Furthermore, the cancellous bone was studied by dynamic tetracycline labelling and histomorphometry. RESULTS: In the vehicle-injected group the trabecular bone volume was 0% (0-1.4), median (range). All PTH-injected rats had trabeculae in the distal metaphysis and the trabecular bone volume (6.7% (2.3-12.0)) was markedly increased (P<0.003). The median trabecular thickness was increased (P<0.003) in the PTH-injected rats (118 microm (104-125)) compared with the vehicle group (0 microm (0-71)). The compressive stress was increased (P<0.003) in the PTH-injected group (0.7 MPa (0.1-2.1)) compared with the vehicle-injected group (0 MPa (0-0.4)). The histomorphometry revealed that only 3 animals of the 10 in the vehicle-injected group had trabeculae in the distal femoral metaphysis. All PTH-injected animals (12 of 12) had continuous trabecular bone network in the marrow cavity. CONCLUSION: Intermittent PTH treatment induced marked formation of new cancellous bone trabeculae with substantial mechanical strength, at a site where it had disappeared in old rats.


2020 ◽  
Author(s):  
Michael A. Friedman ◽  
David H. Kohn

ABSTRACTExercise has long-lasting benefits to bone health. Bone mass and the ability to exercise both decline with age, making it ideal to exercise earlier in life and to maximize gains in bone mass. Increasing strain on bone and frequency of loading during exercise can increase bone formation rate and cross-sectional area. Combining a short-term exercise program with a calcium- and phosphorus-supplemented diet increases cortical bone tissue mineral content (TMC) and area more than exercise alone in adult mice. It was hypothesized that combining high-speed running with a mineral-supplemented diet would lead to greater cortical TMC and area than high-speed running on a standard diet and low-speed running on a supplemented diet after 4 weeks. Male, 15-week old mice were assigned to 7 groups – a baseline group, non-exercised groups fed a control or supplemented diet, low-speed exercised groups fed a control or supplemented diet, and high-speed exercised groups fed a control or supplemented diet. Exercise consisted of 4 weeks of daily treadmill running for 20 min/day at 12 m/min or 20 m/min for low- and high-speed exercise, respectively. High-speed exercised mice had significantly lower body weight and lower tibial length after 4 weeks. Cortical TMC and area were significantly higher in high-speed exercised mice on the supplemented diet than high-speed exercised mice on the control diet. Trabecular bone volume (BV) and bone density were significantly higher in all groups on the supplemented diet than groups on the control diet, regardless of exercise. For mice on the control diet, non-exercised mice had significantly lower trabecular BV than baseline, while both speeds of exercise prevented this decline. There were few effects of exercise or diet on mechanical properties. For mice on the control diet, exercise significantly decreased serum PINP/CTX ratio on day 9 which may be preventing exercise from increasing bone mass or strength after only 4 weeks. For non-exercised mice on the supplemented diet, the serum PINP/CTX ratio on day 30 was significantly greater than for exercised mice, suggesting the supplemented diet may also lead to significantly greater bone mass in non-exercised mice if these interventions were extended beyond 4 weeks. Increasing treadmill speed can lower body weight while maintaining cortical and trabecular bone mass. A mineral-supplemented diet increases cortical and trabecular bone mass with high-speed exercise.


1993 ◽  
Vol 264 (6) ◽  
pp. E938-E942 ◽  
Author(s):  
K. W. Lyles ◽  
T. W. Jackson ◽  
T. Nesbitt ◽  
L. D. Quarles

Glucocorticoids induce bone loss by increasing bone resorption and decreasing bone formation. In this study we have investigated the potential of salmon calcitonin to attenuate glucocorticoid-induced bone loss in a dog model. Male beagles were divided into three groups: 1) untreated controls, 2) prednisone-treated dogs (1 mg.kg-1.day-1 orally), and 3) prednisone-calcitonin-treated dogs (1.5 U.kg-1.day-1 calcitonin subcutaneously and 1 mg.kg-1.day-1 prednisone orally). Assessment of bone mass by dual energy X-ray absorptiometry demonstrated that bone density remained stable in controls throughout 48 wk. Prednisone-treated dogs lost 13.2% of their initial bone mass by 48 wk. Concomitant calcitonin treatment attenuated prednisone-induced bone loss to only 3.2% at 48 wk. Bone histomorphometry of the spine showed reduced trabecular bone volume in prednisone-treated dogs, whereas control and prednisone-calcitonin-treated animals maintained normal trabecular bone volume. Both prednisone- and prednisone-calcitonin-treated dogs acquired a defect in osteoblastic function as evidenced by a reduction in mean wall thickness and trabecular thickness. Thus calcitonin attenuates the early bone loss induced by glucocorticoids. However, calcitonin failed to prevent glucocorticoid-induced osteoblast dysfunction.


1988 ◽  
Vol 29 (6) ◽  
pp. 719-725 ◽  
Author(s):  
M. Nilsson ◽  
O. Johnell ◽  
K. Jonsson ◽  
I. Redlund-Johnell

2010 ◽  
Vol 25 (11) ◽  
pp. 2311-2319 ◽  
Author(s):  
Pornpimol Rianthavorn ◽  
Robert B. Ettenger ◽  
Isidro B. Salusky ◽  
Beatriz D. Kuizon

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


Sign in / Sign up

Export Citation Format

Share Document