Angiotensin II binding sites in aortic endothelium of domestic fowl

1990 ◽  
Vol 258 (3) ◽  
pp. R777-R782 ◽  
Author(s):  
J. N. Stallone ◽  
H. Nishimura ◽  
A. Nasjletti

In domestic fowl, angiotensin II (ANG II) produces a unique vasodepressor response in vivo and endothelium-dependent relaxation of aortic rings in vitro that appear to be a direct effect on vascular smooth muscle mediated through vascular angiotensin receptors. To explore the possible role of the endothelium in ANG II-induced vasodilation, ANG II binding to aortic membrane fractions and intact endothelium and prostaglandin (PG) production were examined in fowl aortas. 125I-[Ile5]ANG II binding by endothelium-intact aortic membrane fractions was consistently higher than binding by identically prepared endothelium-deleted membrane fractions at virtually all concentrations of ligand (10 pM-0.20 microM). Incubation of intact aortic rings with 125I-[Ile5]ANG II (0.50 nM) resulted in specific endothelial binding that increased linearly with time from 5.5 +/- 1.7 (SE) fmol/mg protein at 5 min to 13.7 +/- 1.8 at 30 min. Endothelial ANG II binding increased linearly with the dose of ligand, from 2.7 +/- 0.3 fmol/mg protein at 0.1 nM to 21.0 +/- 2.2 at 1.0 nM. Specific ANG II binding to aortic endothelium was competitively displaced 73 +/- 11% by unlabeled ANG II (0.1 microM) but not by bradykinin (0.1 microM). Incubation of intact aortic rings with [14C]arachidonic acid resulted in the formation of radioactive metabolites that comigrated in thin-layer chromatography with authentic PGE2 but not with 6-keto-PGF1 alpha. PGE2 production by aortic rings (44.4 +/- 4.5 ng.mg dry tissue-1.h-1) was not stimulated by addition of ANG II. These results suggest that specific receptors for ANG II exist in fowl aortic endothelium and that PGs are not involved in ANG II-induced vasodilation of the fowl aorta.

2014 ◽  
Vol 307 (1) ◽  
pp. F25-F32 ◽  
Author(s):  
Fei Wang ◽  
Xiaohan Lu ◽  
Kexin Peng ◽  
Li Zhou ◽  
Chunling Li ◽  
...  

(Pro)renin receptor (PRR) is predominantly expressed in the distal nephron where it is activated by angiotensin II (ANG II), resulting in increased renin activity in the renal medulla thereby amplifying the de novo generation and action of local ANG II. The goal of the present study was to test the role of cycloxygenase-2 (COX-2) in meditating ANG II-induced PRR expression in the renal medulla in vitro and in vivo. Exposure of primary rat inner medullary collecting duct cells to ANG II induced sequential increases in COX-2 and PRR protein expression. When the cells were pretreated with a COX-2 inhibitor NS-398, ANG II-induced upregulation of PRR protein expression was almost completely abolished, in parallel with the changes in medium active renin content. The inhibitory effect of NS-398 on the PRR expression was reversed by adding exogenous PGE2. A 14-day ANG II infusion elevated renal medullary PRR expression and active and total renin content in parallel with increased urinary renin, all of which were remarkably suppressed by the COX-2 inhibitor celecoxib. In contrast, plasma and renal cortical active and total renin content were suppressed by ANG II treatment, an effect that was unaffected by COX-2 inhibition. Systolic blood pressure was elevated with ANG II infusion, which was attenuated by the COX-2 inhibition. Overall, the results obtained from in vitro and in vivo studies established a crucial role of COX-2 in mediating upregulation of renal medullary PRR expression and renin content during ANG II hypertension.


2020 ◽  
Vol 319 (2) ◽  
pp. F345-F357
Author(s):  
Yongzhen Zhao ◽  
Heng Zeng ◽  
Bo Liu ◽  
Xiaochen He ◽  
Jian-Xiong Chen

Angiotensin II (ANG II) is the key contributor to renal fibrosis and injury. The present study investigated the role of endothelium prolyl hydroxylase 2 (PHD2) in ANG II-mediated renal fibrosis and injury. In vitro, endothelial cells (ECs) were isolated from PHD2f/f control [wild-type (WT)] mice or PHD2 EC knockout (PHD2ECKO) mice. In vivo, WT and PHD2ECKO mice were infused with ANG II (1,000 ng·kg−1·min−1) for 28 days. Renal fibrosis, reactive oxygen species (ROS), and iron contents were measured. Knockout of PHD2 resulted in a significant increase in the expression of hypoxia-inducible factor (HIF)-1α and HIF-2α in ECs. Intriguingly, knockout of PHD2 significantly reduced expression of the ANG II type 1 receptor (AT1R) in ECs. WT mice infused with ANG II caused increases in renal fibrosis, ROS formation, and iron contents. ANG II treatment led to a downregulation of PHD1 expression and upregulation of HIF-1α and HIF-2α in the renal cortex and medulla. Knockout of PHD2 in EC blunted ANG II-induced downregulation of PHD1 expression. Furthermore, knockout of PHD2 in ECs attenuated ANG II-induced expression of HIF-1α, HIF-2α, transforming growth factor-β1, p47 phox, gp91 phox, heme oxygenase-1, and ferroportin. This was accompanied by a significant suppression of renal fibrosis, ROS formation, and iron accumulation. In summary, knockout of endothelial PHD2 suppressed the expression of AT1R in ECs and blunted ANG II-induced downregulation of PHD1 and upregulation of HIF-α in the kidney. Our study, for the first time, demonstrates a necessary role of endothelial PHD2 in ANG II-mediated renal fibrosis and injury.


2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sandra B Haudek ◽  
Jeff Crawford ◽  
Erin Reineke ◽  
Alberto A Allegre ◽  
George E Taffet ◽  
...  

Angiotensin-II (Ang-II) plays a key role in the development of cardiomyopathies, as it is associated with many conditions involving heart failure and pathologic hypertrophy. Using a murine model of Ang-II infusion, we found that Ang-II induced the synthesis of monocyte chemoattractant protein 1 (MCP-1) that mediated the uptake of CD34 + /CD45 + monocytic cells into the heart. These precursor cells differentiated into collagen-producing fibroblasts and were responsible for the Ang-II-induced development of reactive fibrosis. Preliminary in vitro data using our monocyte-to-fibroblast differentiation model, suggested that Ang-II required the presence of TNF to induce fibroblast maturation from monocytes. In vivo, they indicated that in mice deficient of both TNF receptors (TNFR1 and TNFR2), Ang-II-induced fibrosis was absent. We now assessed the hypothesis that specific TNFR1 signaling is necessary for Ang-II-mediated cardiac fibrosis. Mice deficient in either TNFR1 (TNFR1-KO) or TNFR2 (TNFR2-KO) were subjected to continuous infusion of Ang-II for 1 to 6 weeks (n=6-8/group). Compared to wild-type, we found that in TNFR1-KO, but not in TNFR2-KO mouse hearts, collagen deposition was attenuated, as was cardiac α-smooth muscle actin protein (a marker for activated fibroblasts). When we isolated viable cardiac fibroblasts and characterized them by flow cytometry, we found that Ang-II infusion in TNFR1-KO, but not in TNFR2-KO, resulted in a marked decrease of CD34 + /CD45 + cells. Quantitative RT-PCR demonstrated a striking reduction of type 1 and 3 collagen, as well of MCP-1 mRNA expression in TNFR1-KO mouse hearts. Further measurements of cardiovascular parameters indicated that TNFR1-KO animals developed lesser Ang-II-mediated LV remodeling, smaller changes in E-linear deceleration times/rates over time, and displayed a lower Tei index (a heart rate independent marker of cardiac function), indicating less stiffness in TNFR1-KO hearts compared to wild-type and TNFR2-KO hearts. The data suggest that Ang-II-dependent cardiac fibrosis requires TNF and its signaling through TNFR1 which enhances the induction of MCP-1 and uptake of monocytic fibroblast precursors that are associated with reactive fibrosis and cardiac remodeling and function.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 707-707
Author(s):  
Quy N Diep ◽  
Mohammed El Mabrouk ◽  
Rhian M Touyz ◽  
Ernesto L Schiffrin

P79 Angiotensin II (Ang II) is an important modulator of cell growth via AT 1 receptors, as demonstrated both in vivo and in vitro . Here, we investigated the role of different proteins involved in the cell cycle, including cyclin D1, cyclin-dependent kinase 4 (cdk4) and cdk inhibitors p21 and p27 in blood vessels of Ang II-infused rats and the effect therein of the AT 1 receptor antagonist losartan. Male Sprague Dawley rats were infused for 7 days with Ang II (120 ng/kg/min s.c.) and/or treated with losartan (10 mg/kg/day orally). DNA synthesis in mesenteric arteries was evaluated by radiolabeled 3 H-thymidine incorporation. The expression of p21, p27, cyclin D1, cdk4 and E2F, which play critical roles during G1-phase of the cell cycle process, was examined by Western blot analysis. Tail cuff systolic blood pressure (mmHg) was elevated (p<0.05, n=9) in Ang II-infused rats (161.3±8.2) vs. controls (110.1±5.3) and normalized by losartan (104.4±3.2). Radiolabeled 3 H-thymidine incorporation (cpm/100 μg DNA) showed that Ang II-infusion significantly increased DNA synthesis (152±5 vs. 102±6, p<0.05). Expression of p21 and p27 was significantly decreased in the Ang II group to 23.2±10.4% and 10.3±5.3% of controls, respectively, whereas expression of cyclin D1 and cdk4 was significantly increased in the Ang II group to 213.7±8% and 263.6±37% of controls, respectively. These effects induced by Ang II infusion was normalized in the presence of losartan. Ang II had no effect on the expression of E2F. Thus, when AT 1 receptors are stimulated in vivo , DNA synthesis is enhanced in blood vessels by activation of cyclin D1 and cdk4. Reduction in cell cycle kinase inhibitors p21 and p27 may contribute to activation of growth induced by in vivo AT 1 receptor stimulation.


1995 ◽  
Vol 268 (1) ◽  
pp. R272-R277 ◽  
Author(s):  
Y. W. Li ◽  
P. G. Guyenet

We examined the effects of angiotensin II (ANG II) on spontaneous unit activity in slices of the rat rostral ventrolateral medulla (RVLM), ANG II (1-3 microM) excited 61% of a population of slowly and irregularly firing RVLM neurons (predrug, 1.2 +/- 0.1 spikes/s; postdrug, 4.6 +/- 0.3 spikes/s; n = 52). ANG II had no effect on pacemaker-like rapidly firing neurons (predrug, 8.6 +/- 0.4 spikes/s; n = 33). The effect of ANG II on slowly firing cells was repeatable and was reduced 75% by 3 microM losartan (baseline, 1.7 +/- 0.4 spikes/s; ANG II, 5.3 +/- 0.7 spikes/s; ANG II+losartan, 2.4 +/- 0.6 spikes/s; n = 12). The ongoing activity of slowly firing neurons was unaffected by 0.5-1 mM kynurenic acid (an ionotropic excitatory amino acid receptor antagonist). Most ANG II-responsive neurons (10 of 11) were inhibited by the alpha 2-adrenergic receptor agonist UK-14,304, but pacemaker-like neurons were not. In conclusion, the RVLM contains neurons excited by AT1 receptor agonists. These neurons are distinct from the previously described pacemaker nonadrenergic presympathetic cells. They may be responsible for the pressor effects produced by injecting ANG II into the RVLM in vivo.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Huang ◽  
Yanqin Fan ◽  
Zhao Gao ◽  
Wei Wang ◽  
Ning Shao ◽  
...  

Abstract Background Studies have indicated that changed expression of hypoxia-inducible factor-1α (HIF-1α) in epithelial cells from the kidney could affect the renal function in chronic kidney disease (CKD). As Angiotensin II (Ang II) is a critical active effector in the renin-angiotensin system (RAS) and was proved to be closely related to the inflammatory injury. Meanwhile, researchers found that Ang II could alter the expression of HIF-1α in the kidney. However, whether HIF-1α is involved in mediating Ang II-induced inflammatory injury in podocytes is not clear. Methods Ang II perfusion animal model were established to assess the potential role of HIF-1α in renal injury in vivo. Ang II stimulated podocytes to observe the corresponding between HIF-1α and inflammatory factors in vitro. Results The expression of inflammatory cytokines such as MCP-1 and TNF-α was increased in the glomeruli from rats treated with Ang II infusion compared with control rats. Increased HIF-1α expression in the glomeruli was also observed in Ang II-infused rats. In vitro, Ang II upregulated the expression of HIF-1α in podocytes. Furthermore, knockdown of HIF-1α by siRNA decreased the expression of MCP-1 and TNF-α. Moreover, HIF-1α siRNA significantly diminished the Ang II-induced overexpression of HIF-1α. Conclusion Collectively, our results suggest that HIF-1α participates in the inflammatory response process caused by Ang II and that downregulation of HIF-1α may be able to partially protect or reverse inflammatory injury in podocytes.


1998 ◽  
Vol 275 (2) ◽  
pp. R357-R362 ◽  
Author(s):  
Kirsten R. Poore ◽  
I. Ross Young ◽  
Benedict J. Canny ◽  
Geoffrey D. Thorburn

Maturation of the fetal adrenal gland is critical for the onset of ovine parturition. It has long been proposed that the fetal adrenal gland may be under inhibitory influences during late gestation. In vitro evidence has suggested that angiotensin II may be such an inhibitory factor and may help to prevent a premature increase in cortisol concentrations. The aim of this study was to test the effect of angiotensin II infusion in vivo on basal cortisol concentrations and fetal adrenal responsiveness to an ACTH-(1—24) challenge. Fetuses received a continuous infusion of either angiotensin II (100 ng ⋅ min−1 ⋅ kg−1; n = 7) or saline (2 ml/h; n = 4), which commenced at 140 days of gestation (GA) and continued for a total of 50 h. Adrenal responsiveness to the administration of ACTH-(1—24) (5 μg/kg) was determined during angiotensin II or saline infusions at both 2 and 48 h after infusion onset. Angiotensin II had no significant effect on adrenal responsiveness after acute (2 h) or chronic (48 h) infusion. There was no effect of saline or angiotensin II infusion on basal immunoreactive ACTH or cortisol concentrations after 2 h, but there was a significant increase in basal cortisol concentrations in both treatment groups by 48 h, probably reflecting the normal rise in cortisol concentrations at this GA. Mean arterial blood pressure was significantly increased in angiotensin II-infused fetuses only. This study has therefore found no evidence to suggest that angiotensin II infusion in vivo modulates fetal basal cortisol concentrations or adrenal responsiveness in the last week of gestation, in contrast with previous in vitro studies. These results throw into question the proposed role of angiotensin II as a negative modulator of adrenal function in the ovine fetus.


1975 ◽  
Vol 21 (4) ◽  
pp. 521-527 ◽  
Author(s):  
Noritake Asato ◽  
Maria van Soestbergen ◽  
F William Sunderman

Abstract Binding of 63Ni(Il) to ultrafiltrable constituents of rabbit serum was studied (a) after in vitro incubation (2 h, 37 °C) of rabbit serum with 63NiCl2 (10-100 µmol/liter), and (b) at intervals (0.25-2 h) after in vivo administration of 63NiCl2 (40-160 µmol/kg body wt, i.v.). Serum ultrafiltrates were fractionated by thin-layer chromatography, and the separated compounds made visible by autoradiography and by ninhydrin staining. Several (≃5) ultrafiltrable 63Ni-complexes were demonstrable as distinct radiodense 63Ni-bands with chromatographic mobilities corresponding to those of ninhydrin-positive bands. Unbound 63Ni(II) was not detected in serum ultrafiltrates in either the in vitro or in vivo experiments. In sera (n = 10) incubated in vitro with 63Ni(II) (10 µmol/ liter), the mean percentage of ultrafiltrable 63Ni was 36% (range = 33-38) of total serum 63Ni. In contrast, in sera (n = 10) obtained 2 h after i.v. injection of 63Ni(II) (40 µmol/kg), the mean concentration of total serum 63Ni was 10.8 µmol/liter (range = 6-14), and the mean percentage of ultrafiltrable 63Ni was 15% (range = 9-21) of total serum 63Ni. The disparity between the percentages of ultrafiltrable 63Ni obtained in vitro and in vivo was obviated when the in vivo experiments were performed in rabbits bilaterally nephrectomized, with ligated common bile ducts. This investigation confirms the existence of several nickel receptors in serum ultrafiltrates and substantiates the role of ultrafiltrable complexes in the excretion of nickel.


Sign in / Sign up

Export Citation Format

Share Document