Do the suprachiasmatic nuclei oscillate in old rats as they do in young ones?

1993 ◽  
Vol 265 (5) ◽  
pp. R1216-R1222 ◽  
Author(s):  
E. Satinoff ◽  
H. Li ◽  
T. K. Tcheng ◽  
C. Liu ◽  
A. J. McArthur ◽  
...  

The basis of the decline in circadian rhythms with aging was addressed by comparing the patterns of three behavioral rhythms in young and old rats with the in vitro rhythm of neuronal activity in the suprachiasmatic nuclei (SCN), the primary circadian pacemaker. In some old rats, rhythms of body temperature, drinking, and activity retained significant 24-h periodicities in entraining light-dark cycles; in others, one or two of the rhythms became aperiodic. When these rats were 23-27.5 mo old they were killed, and single-unit firing rates in SCN brain slices were recorded continuously for 30 h. There was significant damping of mean peak neuronal firing rates in old rats compared with young. SCN neuronal activities were analyzed with reference to previous entrained behavioral rhythm patterns of individual rats as well. Neuronal activity from rats with prior aperiodic behavioral rhythms was erratic, as expected. Neuronal activity from rats that were still maintaining significant 24-h behavioral rhythmicity at the time they were killed was erratic in most cases but normally rhythmic in others. Thus there was no more congruence between the behavioral rhythms and the brain slice rhythms than there was among the behavioral rhythms alone. These results, the first to demonstrate aberrant SCN firing patterns and a decrease in amplitude in old rats, imply that aging could either disrupt coupling between SCN pacemaker cells or their output, or cause deterioration of the pacemaking properties of SCN cells.

2000 ◽  
Vol 278 (3) ◽  
pp. R620-R627
Author(s):  
Xinzheng Xi ◽  
Linda A. Toth

Peripheral administration of lipopolysaccharide (LPS) is associated with alterations in sleep and the electroencephalogram. To evaluate potential neuronal mechanisms for the somnogenic effects of LPS administration, we used unanesthetized rats to survey the firing patterns of neurons in various regions of rat basal forebrain (BF) and hypothalamus during spontaneous sleep and waking and during the epochs of sleep and waking that occurred after the intraperitoneal administration of LPS. In the brain regions studied, LPS administration was associated with altered firing rates in 39% of the neurons examined. A larger proportion of LPS-responsive units showed vigilance-related alterations in firing rates compared with nonresponsive units. Approximately equal proportions of LPS-responsive neurons showed increased and decreased firing rates after LPS administration, with some units in the lateral preoptic area of the hypothalamus showing particularly robust increases. These findings are consistent with other studies showing vigilance-related changes in neuronal activity in various regions of BF and hypothalamus and further demonstrate that peripheral LPS administration alters neuronal firing rates in these structures during both sleep and waking.


2007 ◽  
Vol 97 (3) ◽  
pp. 2553-2558 ◽  
Author(s):  
T. M. Brown ◽  
C. S. Colwell ◽  
J. A. Waschek ◽  
H. D. Piggins

Vasoactive intestinal polypeptide (VIP), acting via the VPAC2 receptor, is a key signaling pathway in the suprachiasmatic nuclei (SCN), the master clock controlling daily rhythms in mammals. Most mice lacking functional VPAC2 receptors are unable to sustain behavioral rhythms and lack detectable SCN electrical rhythms in vitro. Adult mice that do not produce VIP (VIP/PHI−/−) exhibit less severe alterations in wheel-running rhythms, but the effects of this deficiency on the amplitude, phasing, or periodicity of their SCN cellular rhythms are unknown. To investigate this, we used suction electrodes to extracellularly record multiple- and single-unit electrical activity in SCN brain slices from mice with varying degrees of VIP deficiency, ranging from wild-type (VIP/PHI+/+) to heterozygous (VIP/PHI+/−) and VIP/PHI−/− animals. We found decreasing proportions of rhythmic cells in SCN slices from VIP/PHI+/+ (∼91%, n = 23) through VIP/PHI-/+ (∼71%, n = 28) to VIP/PHI−/− mice (62%; n = 37) and a parallel trend toward decreasing amplitude in the remaining rhythmic cells. SCN neurons from VIP/PHI−/− mice exhibited a broad range in the period and phasing of electrical rhythms, concordant with the known alterations in their behavioral rhythms. Further, treatment of VIP/PHI−/− slices with a VPAC2 receptor antagonist significantly reduced the proportion of oscillating neurons, suggesting that VPAC2 receptors still become activated in the SCN of these mice. The results establish that VIP is important for appropriate periodicity and phasing of SCN neuronal rhythms and suggest that residual VPAC2 receptor signaling promotes rhythmicity in adult VIP/PHI−/− mice.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


1969 ◽  
Vol 111 (2) ◽  
pp. 157-165 ◽  
Author(s):  
A. Sheltawy ◽  
R. M. C. Dawson

1. The distribution of individual phospholipids was determined in hen brain and compared with that in sciatic nerve obtained in a previous investigation. Sciatic nerve is more enriched in the myelinic phospholipids ethanolamine plasmalogen, phosphatidylserine and sphingomyelin, but it contains relatively less triphosphoinositide, and much less diphosphoinositide, than the brain. 2. The course of incorporation of intraperitoneally injected 32P into the acid-soluble phosphorus, phosphoinositides and total phospholipids of hen brain and sciatic nerve was followed. Although the maximum specific radioactivity in sciatic nerve of acid-soluble phosphorus is 4·5 times, and that of triphosphoinositide six times, that in the brain, the relative rate of triphosphoinositide phosphorus synthesis per gram of brain is three times that in sciatic nerve. 3. Administration of the demyelinating agent tri-o-cresyl phosphate to hens has no significant effect on the amounts or the rate of 32P incorporation into the total phospholipids of the sciatic nerve. However, the rate of incorporation of 32P into triphosphoinositide, although not its concentration, is raised from the first day after administration of the drug and remains thus 13 and 23 days later. 4. The incorporation of 32P into polyphosphoinositides of hen brain slices in vitro was studied. The recovery of triphosphoinositide from the slices is markedly increased in the presence of EDTA, although the rate of incorporation of 32P is unaffected. The incorporation of 32P is dependent on the presence of Mg2+ and Ca2+ in the medium, and is decreased when Na+ is replaced with K+ or cholinium ions.


2010 ◽  
Vol 104 (1) ◽  
pp. 539-547 ◽  
Author(s):  
Andrea Insabato ◽  
Mario Pannunzi ◽  
Edmund T. Rolls ◽  
Gustavo Deco

Neurons have been recorded that reflect in their firing rates the confidence in a decision. Here we show how this could arise as an emergent property in an integrate-and-fire attractor network model of decision making. The attractor network has populations of neurons that respond to each of the possible choices, each biased by the evidence for that choice, and there is competition between the attractor states until one population wins the competition and finishes with high firing that represents the decision. Noise resulting from the random spiking times of individual neurons makes the decision making probabilistic. We also show that a second attractor network can make decisions based on the confidence in the first decision. This system is supported by and accounts for neuronal responses recorded during decision making and makes predictions about the neuronal activity that will be found when a decision is made about whether to stay with a first decision or to abort the trial and start again. The research shows how monitoring can be performed in the brain and this has many implications for understanding cognitive functioning.


1975 ◽  
Vol 53 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Samuel W. French ◽  
Douglas S. Palmer ◽  
Mary E. Narod

The effect of ethanol withdrawal on the cAMP response of cerebral cortical brain slices was studied. The cAMP response was evoked in vitro by various neurotransmitters including norepinephrine (NE), histamine, serotonin, dopamine, acetylcholine, and γ-aminobutyric acid (GABA). The cAMP response to NE and histamine was enhanced by ethanol withdrawal. Serotonin evoked a cAMP response in the brain slices from ethanol-withdrawal rats but not in pair-fed controls. The histamine and serotonin evoked responses were blocked by chlortripolon and methysergide, respectively. The responses to histamine and serotonin were also blocked by a- and β-adrenergic antagonists, possibly because of the nonspecific membrane stabilizing effect of these antagonists. GABA inhibited the NE stimulated cAMP response possibly through the hyperpolarizing action of GABA. The results support the hypothesis that ethanol withdrawal induces a nonspecific postjunctional supersensitivity. It is postulated that the supersensitivity involves a partial depolarization of the receptor membrane. Alternative hypotheses are reviewed.


1992 ◽  
Vol 107 (4) ◽  
pp. 501-510 ◽  
Author(s):  
Andrew T. Lyos ◽  
William E. Winter ◽  
Charles M. Henley

Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is important in development and regeneration. We hypothesize that aminoglycoside inhibition of ODC mediates developmental hypersensitivity to aminoglycoside ototoxicity. Kanamycin effects on ODC activity (decarboxylation of ornithine) in vitro were determined in the postmitochondriai fraction of cochlear and renal homogenates from 11-day-old rats. Kanamycin inhibited cochlear and renal ODC by an uncompetitive mechanism. For the cochlear enzyme, the inhibitor constant (Ki) for kanamycin was 99 ± 25 (μmol/L; for the renal enzyme, the Ki = 1.5 ± 0.1 mmol/L. In vivo effects of kanamycin on cochlear, renal, brain ODC activity were determined in rats treated with kanamycin (400 mg/kg/day, intramuscularly) or saline during postnatal days 11 through 20, the hypersensitive period for ototoxicity. Rats were killed on postnatal days 12,14,16, and 20 and ODC was assayed. Kanamycin significantly inhibited ODC in the lateral wall-organ of Corti and kidney (ANOVA α = 0.05), but had no effect on cochlear nerve and no consistent inhibitory effect in the brain. These results suggest that ODC is a potential target of kanamycin in susceptible tissues and may be a contributing factor in developmental sensitivity to the drug by inhibiting repair and developmental processes mediated by ODC.


2019 ◽  
Author(s):  
Hayley Tomes ◽  
Anja de Lange ◽  
Ulrich Fabien Prodjinotho ◽  
Siddhartha Mahanty ◽  
Katherine Smith ◽  
...  

AbstractNeurocysticercosis (NCC) is caused by the presence of Taenia solium larvae in the brain and is the leading cause of adult-acquired epilepsy worldwide. However, little is known about how seizures emerge in NCC. To address this knowledge gap we used whole-cell patch-clamp electrophysiology and calcium imaging in rodent hippocampal organotypic slice cultures to identify direct effects of cestode larval products on neuronal activity. We found both whole cyst homogenate and excretory/secretory (E/S) products of Taenia larvae have an acute excitatory effect on neurons, which trigger seizure-like events in vitro. Underlying this effect was Taenia-induced neuronal depolarization, which was mediated by glutamate receptor activation but not by nicotinic acetylcholine receptors, acid-sensing ion channels nor Substance P. Glutamate assays revealed the homogenate of both Taenia crassiceps and Taenia solium larvae contained high concentrations of glutamate and that larvae of both species consistently produce and release this excitatory neurotransmitter into their immediate environment. These findings contribute towards the understanding of seizure generation in NCC.Author summaryBrain infection by larvae of the tapeworm Taenia solium (neurocysticercosis or NCC) is the leading cause of acquired epilepsy in adulthood. Little is understood about the mechanisms by which larvae cause seizures. To address this, we used electrophysiological and imaging techniques in rodent brain slices to investigate how tapeworm larvae directly impact neuronal function. We discovered that both the homogenate and secretory products of tapeworm larvae excite neurons and can trigger seizure-like events in brain slices. This effect was caused by the activation of glutamate receptors and not by activating other types of receptors in the brain. Finally, we observed that tapeworm larvae both contain and release the neurotransmitter glutamate into their immediate environment. These findings are relevant for understanding how tapeworm larvae cause seizures in NCC.


1994 ◽  
Vol 266 (4) ◽  
pp. R1259-R1266 ◽  
Author(s):  
J. D. Miller ◽  
V. H. Cao ◽  
H. C. Heller

The temperature sensitivity of neuronal firing rates in the suprachiasmatic nuclei (SCN) of the hypothalami of rats and ground squirrels was studied in vitro. SCN from euthermic squirrels were studied during the hibernation season (winter) and during the summer. SCN from hibernating squirrels were also studied. Most properties of SCN cells from hibernators and nonhibernators were similar. Warm- and cold-sensitive neurons were observed in all groups, but cold-sensitive neurons were more common in SCN from hibernating squirrels. No evidence for temperature compensation of firing rate was accumulated; no cell was observed to fire below 16.6 degrees C. If the persistence of circadian rhythmicity is a function of action potential-dependent neurotransmission from the SCN, these results suggest that deep hibernation (5-17 degrees C) should be characterized by an absence of circadian fluctuation in temperature. Two possible adaptations for the shallow torpor seen at somewhat higher temperatures were observed in the SCN: 1) a relatively large population of cold-sensitive neurons and 2) a population of neurons with very high activation energies. Activation energy analysis suggested that most of the temperature-sensitive properties of these cells could be explained in terms of the thermal sensitivity of the sodium channel.


1936 ◽  
Vol 82 (339) ◽  
pp. 431-433
Author(s):  
J. H. Quastel

I want to speak of the work we have been doing in Cardiff on the metabolism of the nervous system. The work was carried out there because of the importance of the narcosis treatment. It seemed to us there a pity that a treatment such as that should be given up because of the considerable toxicity possible in relation to it. The research was undertaken to see if we could diminish the toxicity, at the same time seeking an idea as to how narcotics work. I ask that you will realize that the main substance burned by the brain is glucose. The dominant form of metabolism in the nervous system is connected with the breakdown of glucose and lactic acid, and this can be proved by experiment in the living animal and with brain-tissue in vitro. In doing experiments we are not able to carry out work with human brain, because we cannot get human tissue fresh enough, so we have to carry out experiments with animals. They are carried out in this way. We cut slices of the cortex of the brain as soon as the animal is dead, that is to say, within ten minutes of death the brain is out and slices have been cut. They are placed in a physiological medium in the presence of glucose, and we follow the metabolism of that tissue, which allows us to estimate the amount of oxygen being taken up by the brain. If luminal, chloretone, hyoscine or somnifaine be placed with the brain-tissue, then the respiration, instead of being at the usual level, starts lower down, and maintains a straight line. We wanted to see whether this action is reversible or irreversible. If the latter, then on removing the brain-slices from the narcotic it should no longer behave like a normal piece of tissue. Actually, when the brain-slice is removed and placed in Ringer solution, with no narcotic, the respiration goes up and becomes equal to that shown by the slice which had no narcotic. That is to say, the process is reversible.


Sign in / Sign up

Export Citation Format

Share Document