Synchronization of cardiac-related discharges of sympathetic nerves with inputs from widely separated spinal segments

1995 ◽  
Vol 268 (6) ◽  
pp. R1472-R1483 ◽  
Author(s):  
G. L. Gebber ◽  
S. Zhong ◽  
S. M. Barman

We used phase spectral analysis to study the relationships between the cardiac-related discharges of pairs of postganglionic sympathetic nerves in urethan-anesthetized or decerebrate cats. Phase angle when converted to a time interval should equal the difference in conduction times from the brain to the nerves (i.e., transportation lag) if their cardiac-related discharges have a common central source. Transportation lag was estimated as the difference in the onset latencies of activation of the nerves by electrical stimulation of the medulla or cervical spinal cord. The phase angle for the cardiac-related discharges of two nerves was not always equivalent in time to the transportation lag. For example, in some cases the cardiac-related discharges of the renal nerve were coincident with or led those of the inferior cardiac nerve. In contrast, the electrically evoked responses of the renal nerve lagged those of the inferior cardiac nerve by > or = 32 ms. These observations are consistent with a model of multiple and dynamically coupled brain stem generators of the cardiac-related rhythm, each controlling a different sympathetic nerve or exerting nonuniform influences on different portions of the spinal sympathetic outflow.

1999 ◽  
Vol 82 (2) ◽  
pp. 841-854 ◽  
Author(s):  
Gerard L. Gebber ◽  
Sheng Zhong ◽  
Craig Lewis ◽  
Susan M. Barman

Time and frequency domain analyses were used to examine the changes in the relationships between the discharges of the inferior cardiac (CN) and vertebral (VN) postganglionic sympathetic nerves produced by electrical activation of the midbrain periaqueductal gray (PAG) in urethan-anesthetized, baroreceptor-denervated cats. CN-VN coherence and phase angle in the 10-Hz band served as measures of the coupling of the central oscillators controlling these nerves. The 10-Hz rhythm in CN and VN discharges was entrained 1:1 to electrical stimuli applied to the PAG at frequencies between 7 and 12 Hz. CN 10-Hz discharges were increased, and VN 10-Hz discharges were decreased when the frequency of PAG stimulation was equal to or above that of the free-running rhythm. In contrast, stimulation of the same PAG sites at lower frequencies increased, albeit disproportionately, the 10-Hz discharges of both nerves. In either case, PAG stimulation significantly increased the phase angle between the two signals (VN 10-Hz activity lagged CN activity); coherence values relating their discharges were little affected. However, the increase in phase angle was significantly more pronounced when the 10-Hz discharges of the two nerves were reciprocally affected. Importantly, partialization of the phase spectrum using the PAG stimuli did not reverse the change in CN-VN phase angle. This observation suggests that the increase in the CN-VN phase angle reflected changes in the phase relations between coupled oscillators in the brain stem rather than the difference in conduction times to the two nerves from the site of PAG stimulation. In contrast to the effects elicited by PAG stimulation, stimulation of the medullary lateral tegmental field induced uniform increases in the 10-Hz discharges of the two nerves and no change in the CN-VN phase angle. Our results demonstrate that changes in the phase relations among coupled brain stem 10-Hz oscillators are accompanied by differential patterns of spinal sympathetic outflow. The reciprocal changes in CN and VN discharges produced by PAG stimulation are consistent with the pattern of spinal sympathetic outflow expected during the defense reaction.


1983 ◽  
Vol 245 (3) ◽  
pp. R345-R352 ◽  
Author(s):  
L. C. Weaver ◽  
H. K. Fry ◽  
R. L. Meckler ◽  
R. S. Oehl

Activation of cardiac sympathetic afferent nerves can initiate excitatory cardiocardiac reflexes through pathways that are exclusively spinal. In addition, stimulation of the same nerves also causes lower thoracic and lumbar sympathetic excitation, but the contribution of spinal pathways to these reflexes is unknown. Therefore experiments were performed to compare cardiac, splenic, and renal sympathetic responses to cardiac sympathetic afferent stimulation before and after cervical spinal cord transection in anesthetized, vagotomized, sinoaortic-denervated cats. Electrical stimulation of afferent cardiac sympathetic nerves produced excitatory responses in cardiac and renal nerves before transection but only cardiac nerve responses after transection. In contrast, afferent stimulation by epicardially applied bradykinin excited cardiac, renal, and splenic nerves before and after cord transection. Splenic nerve responses were greater than renal nerve responses in intact and spinal cats. These results demonstrate that spinal reflexes initiated by activation of cardiac sympathetic afferent nerves are not limited to cardiocardiac pathways. The similarity of patterns of responses in intact and spinal cats suggests that spinal pathways contribute significantly to the reflex excitation observed in intact animals.


1997 ◽  
Vol 272 (2) ◽  
pp. R615-R620 ◽  
Author(s):  
R. R. Campos ◽  
R. M. McAllen

To locate premotor neurons controlling the cardiac sympathetic supply and to determine their relation to brain stem vasomotor pathways, the rostral ventrolateral medulla (RVLM) was mapped in seven chloralose-anesthetized cats, with the use of microinjections of sodium glutamate (5-10 nl, 0.1 M) to excite neuronal cell bodies. Cardiac sympathetic responses were recorded from the ipsilateral inferior cardiac nerve, while recordings were made simultaneously from postganglionic vasoconstrictor fibers to skeletal muscle (ipsilateral peroneal nerve). Baroreceptors were denervated to eliminate the reflex effects of blood pressure changes. Most of the 115 injected RVLM sites excited both sympathetic nerves. Inferior cardiac nerve activity increased by up to 395% (mean 105 +/- 86%, SD), and muscle vasoconstrictor activity increased by up to 487% (110 +/- 107%). Their relative response varied with injection site, however. For 16 of the most rostromedial injections, the inferior cardiac nerve-to-muscle vasoconstrictor response ratio exceeded that expected by two- to sevenfold; for 9 very caudolateral injections that ratio was strongly reversed, favoring muscle vasoconstrictors by two to fivefold. Intervening sites gave more equal responses. Overall, the response ratio varied systematically with injection site. These findings demonstrate that neurons with preferential or selective actions on the cardiac sympathetic outflow are present in the RVLM and are organized topographically. The simplest interpretation is that a population of selective cardiac sympathetic premotor neurons occupies a territory substantially overlapping, but centered rostromedially to, the population controlling vasoconstriction in muscle.


1993 ◽  
Vol 264 (5) ◽  
pp. R857-R866 ◽  
Author(s):  
S. Zhong ◽  
Z. S. Huang ◽  
G. L. Gebber ◽  
S. M. Barman

We studied the effects of brain stem and spinal lesions on the 10-Hz rhythms in left and right inferior cardiac sympathetic nerve discharge (SND) of baroreceptor-denervated, decerebrate cats. Unilateral medullary lesions [parasagittal section 1.5 mm lateral to midline, radiofrequency lesion of the rostral ventrolateral medulla (RVLM), or chemical inactivation (muscimol) of the RVLM] dramatically reduced the 10-Hz rhythmic discharges in the two nerves. Power in the 10-Hz band of ipsilateral inferior cardiac SND was reduced more than that in contralateral SND. In contrast, bilateral parasagittal medullary sections or microinjection of muscimol into the medullary raphe uniformly reduced the 10-Hz rhythmic discharges of both nerves. Unlike unilateral medullary lesions, rostral pontine or cervical spinal hemisection reduced the 10-Hz discharges of only the ipsilateral inferior cardiac nerve. The chemical inactivation experiments demonstrate that the 10-Hz rhythm in SND is dependent on medullary raphe and RVLM neurons. Moreover the experiments with unilateral lesions demonstrate a mutually facilitatory interaction of medullary circuits that are responsible for the 10-Hz rhythmic discharges in sympathetic nerves located on opposite sides of the body.


2021 ◽  
pp. 1-51
Author(s):  
Yan Yin Phoi ◽  
Michelle Rogers ◽  
Maxine P. Bonham ◽  
Jillian Dorrian ◽  
Alison M. Coates

Abstract Circadian rhythms, metabolic processes, and dietary intake are inextricably linked. Timing of food intake is a modifiable temporal cue for the circadian system and may be influenced by numerous factors, including individual chronotype—an indicator of an individual’s circadian rhythm in relation to the light-dark cycle. This scoping review examines temporal patterns of eating across chronotypes and assesses tools that have been used to collect data on temporal patterns of eating and chronotype. A systematic search identified thirty-six studies in which aspects of temporal patterns of eating including meal timings; meal skipping; energy distribution across the day; meal frequency; time interval between meals, or meals and wake/sleep times; midpoint of food/energy intake; meal regularity; and duration of eating window were presented in relation to chronotype. Findings indicate that compared to morning chronotypes, evening chronotypes tend to skip meals more frequently, have later mealtimes, and distribute greater energy intake towards later times of the day. More studies should explore the difference in meal regularity and duration of eating window amongst chronotypes. Currently, tools used in collecting data on chronotype and temporal patterns of eating are varied, limiting the direct comparison of findings between studies. Development of a standardised assessment tool will allow future studies to confidently compare findings to inform the development and assessment of guidelines that provide recommendations on temporal patterns of eating for optimal health.


AoB Plants ◽  
2021 ◽  
Author(s):  
Tiphaine Vidal ◽  
Hafssa Aissaoui ◽  
Sabrina Rehali ◽  
Bruno Andrieu

Abstract Simulating leaf development from initiation to maturity opens new possibilities to model plant–environment interactions and the plasticity of plant architecture. This study analyses the dynamics of leaf production and extension along a maize (Zea mays) shoot to assess important modelling choices. Maize plants from two cultivars originating from the same inbred line, yet differing in the length of mature leaves were used in this study. We characterised the dynamics of the blade and sheath lengths of all phytomers by dissecting plants every 2–3 days. We analysed how differences in leaf size were built up and we examined the coordination between the emergence of organs and phases of their extension. Leaf extension rates were higher in the cultivar with longer leaves than in the cultivar with shorter leaves; no differences were found in other aspects. We found that (i) first post-embryonic leaves were initiated at a markedly higher rate than upper leaves; (ii) below ear position, sheaths were initiated at a time intermediate between tip emergence and appearance, while above the ear position, sheaths were initiated at a high rate, such that the time interval between the blade and sheath initiations decreased for these leaves; and (iii) ear position also marked a change in the correlation in size between successive phytomers with little correlation of size between upper and lower leaves. Our results identified leaf extension rate as the reason for the difference in size between the two cultivars. The two cultivars shared the same pattern for the timing of initiation events, which was more complex than previously thought. The differences described here may explain some inaccuracies reported in functional-structural plant models. We speculate that genotypic variation in behaviour for leaf and sheath initiation exists, which has been little documented in former studies.


Geophysics ◽  
1965 ◽  
Vol 30 (3) ◽  
pp. 363-368 ◽  
Author(s):  
T. W. Spencer

The formal solution for an axially symmetric radiation field in a multilayered, elastic system can be expanded in an infinite series. Each term in the series is associated with a particular raypath. It is shown that in the long‐time limit the individual response functions produced by a step input in particle velocity are given by polynomials in odd powers of the time. For rays which suffer m reflections, the degree of the polynomials is 2m+1. The total response is obtained by summing all rays which contribute in a specified time interval. When the rays are selected indiscriminately, the difference between the magnitude of the partial sum at an intermediate stage of computation and the magnitude of the correct total sum may be greater than the number of significant figures carried by the computer. A prescription is stated for arranging the rays into groups. Each group response function varies linearly in the long‐time limit and goes to zero when convolved with a physically realizable source function.


Author(s):  
R.J. Milner ◽  
F. Reyers ◽  
J.H. Taylor ◽  
J.S. Van den Berg

A clinical trial was designed to evaluate the effects of diminazene aceturate and its stabiliser antipyrine on serum pseudocholinesterase (PChE) and red blood cell acetylcholinesterase (RBC AChE) in dogs with babesiosis. The trial was conducted on naturally occurring, uncomplicated cases of babesiosis (n = 20) that were randomly allocated to groups receiving a standard therapeutic dose of diminazene aceturate with antipyrine stabiliser (n = 10) or antipyrine alone (n = 10). Blood was drawn immediately before and every 15 minutes for 1 hour after treatment. Plasma PChE showed a 4 % decrease between 0 and 60 min within the treatment group (p < 0.05). No statistically significant differences were found between the treatment and control groups at any of the time intervals for PChE. There was an increase in RBC AChE activity at 15 min in the treatment group (p < 0.05). No significant differences were found between the treatment and control groups at any time interval for RBC AChE. In view of the difference in PChE, samples from additional, new cases (n = 10) of canine babesiosis were collected to identify the affect of the drug over 12 hours. No significant depression was identified over this time interval. The results suggests that the underlying mechanism in producing side-effects, when they do occur, is unlikely to be through cholinesterase depression.


2017 ◽  
Vol 28 (75) ◽  
pp. 361-376 ◽  
Author(s):  
Leandro dos Santos Maciel ◽  
Rosangela Ballini

ABSTRACT This article considers range-based volatility modeling for identifying and forecasting conditional volatility models based on returns. It suggests the inclusion of range measuring, defined as the difference between the maximum and minimum price of an asset within a time interval, as an exogenous variable in generalized autoregressive conditional heteroscedasticity (GARCH) models. The motivation is evaluating whether range provides additional information to the volatility process (intraday variability) and improves forecasting, when compared to GARCH-type approaches and the conditional autoregressive range (CARR) model. The empirical analysis uses data from the main stock market indexes for the U.S. and Brazilian economies, i.e. S&P 500 and IBOVESPA, respectively, within the period from January 2004 to December 2014. Performance is compared in terms of accuracy, by means of value-at-risk (VaR) modeling and forecasting. The out-of-sample results indicate that range-based volatility models provide more accurate VaR forecasts than GARCH models.


1995 ◽  
Vol 74 (1) ◽  
pp. 474-478 ◽  
Author(s):  
M. I. Cohen ◽  
Q. Yu ◽  
W. X. Huang

1. In vagotomized, paralyzed, decerebrate cats, simultaneous recordings were taken from one or more sympathetic nerves [cervical sympathetic (CS), inferior cardiac (IC), splanchnic (SP)] and from medullary neurons in vasomotor-related regions. Coherence analyses were used to ascertain the presence of sympathetic rhythms (2-6 Hz or "3-Hz rhythm," 7-13 Hz or "10-Hz rhythm") that were correlated between different signals. The occurrence of a significant peak at such a frequency in a unit-nerve coherence spectrum allowed the identification of a medullary neuron as sympathetic related. 2. A serendipitous example is given of a rostral ventrolateral medullary neuron that had significant unit-nerve 10-Hz coherence peaks for three sympathetic nerves (CS, IC, SP); but, as revealed by partial coherence analysis, the unit activity's correlation with one nerve's activity could be partially or completely dependent on its correlation with other nerve activities. Thus in this case the unit-CS and unit-IC coherences at 10 Hz were completely dependent on the SP rhythm, whereas the unit-SP coherence was not significantly affected by the CS and IC rhythms. This asymmetry suggests that the neuron was preferentially connected to SP-generating medullary circuits. 3. This example indicates the strength of partial coherence analysis as a means of studying differential connectivity between medullary sympathetic-related neurons and sympathetic output neuron populations.


Sign in / Sign up

Export Citation Format

Share Document