Food hoarding is increased by pregnancy, lactation, and food deprivation in Siberian hamsters

1997 ◽  
Vol 272 (1) ◽  
pp. R118-R125 ◽  
Author(s):  
T. J. Bartness

Food hoarding by male Siberian hamsters (Phodopus sungorus sungorus) is increased only when body mass (fat) is decreased. Pregnancy and lactation result in marked decreases in lipid reserves (approximately 50%) in female Siberian hamsters. Therefore, the present experiments addressed the following questions: 1) Is food hoarding increased after food deprivation in female Siberian hamsters? and 2) How do food hoarding and food intake change during pregnancy, lactation, and their combination? During measurements in a simulated burrow system food hoarding increased after a 32-h fast (approximately 2- to 3-fold) to a level similar to that seen previously in males and was markedly increased during pregnancy (approximately 12- to 18-fold, lactation, and concurrent pregnancy and lactation (approximately 10- to 25-fold for each of the latter 2 conditions). Postfast food intake was not different from prefast baseline measures. Food intake was increased only during the last few days of pregnancy and was elevated throughout lactation. These impressive increases in the level of food hoarding during pregnancy, lactation and their combination suggest that food hoarding may play an important role in supplying easily accessible energy to subserve these reproductive conditions.

2008 ◽  
Vol 295 (6) ◽  
pp. R1737-R1746 ◽  
Author(s):  
Erin Keen-Rhinehart ◽  
Timothy J. Bartness

Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 μg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 μg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.


2013 ◽  
Vol 305 (4) ◽  
pp. R323-R333 ◽  
Author(s):  
Brett J. W. Teubner ◽  
Timothy J. Bartness

Circulating concentrations of the stomach-derived “hunger-peptide” ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11–2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1–2 h and 2–4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given every 24 h across 48-h food deprivation inconsistently inhibited food hoarding after refeeding and c-Fos-ir, similarly to inabilities to do so in laboratory rats and mice. These results suggest that ghrelin may not be necessary for food deprivation-induced foraging and hoarding and neural activation. A possible compensatory response, however, may underlie these findings because SPM treatment led to marked increases in circulating ghrelin concentrations. Collectively, these results show that SPM can block exogenous ghrelin-induced ingestive behaviors, but the necessity of ghrelin for food deprivation-induced ingestive behaviors remains unclear.


1994 ◽  
Vol 266 (4) ◽  
pp. R1111-R1117 ◽  
Author(s):  
T. J. Bartness ◽  
M. R. Clein

Syrian hamsters do not increase their food intake following several metabolic challenges, including food deprivation and blockade of metabolic fuel utilization, in contrast to the response of other small rodents to these challenges. Perhaps hamsters respond to such challenges differently, for example by altering hoarding. In the present experiments, we have begun to question the role of food hoarding in the total energy balance of Siberian hamsters. Therefore, we developed a simulated burrow system, where food was available outside the burrow for consumption and/or hoarding during a 15-h period surrounding the 8-h dark portion of the photocycle. Food hoarding, but not food intake, increased dramatically after 32- and 56-h fasts and was greater following the longer fast. Food-restricted weight-reduced hamsters (80% of ad libitum-fed controls) were refed and given the opportunity to hoard. Initially, when body weights were low, food hoarding was maximal and then decreased gradually to control levels as body weights reached those of the ad libitum-fed controls. Food intake was not affected. Neither hoarding nor food intake was affected by treatment with long-acting protamine zinc insulin, given to enhance the storage of metabolic fuels, at any dose tested. Finally, neither food intake nor hoarding was affected by treatment with the glucose utilization blocker 2-deoxy-D-glucose, the fatty acid utilization blocker methyl palmoxirate, or a combination of the two treatments, all at doses that stimulate food intake in laboratory rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 272 (3) ◽  
pp. R783-R792 ◽  
Author(s):  
A. D. Wood ◽  
T. J. Bartness

We tested the inverse relationship between body fat and food hoarding in Siberian hamsters by decreasing or increasing body fat through partial surgical lipectomy (LIPX) or by making obesity-inducing lesions of the paraventricular nucleus of the hypothalamus (PVNx), respectively. We asked three questions. 1) Is food hoarding increased after body fat loss due to LIPX? 2) Is food hoarding decreased after PVNx? 3) Does PVNx affect the hoarding response to LIPX? Hamsters housed in a simulated burrow system increased food hoarding after LIPX followed by a decrease to pre-LIPX levels as body fat was partially compensated through an increase in the mass of their unoperated fat pads. PVNx hamsters had increased body mass and food intake but did not have decreased food hoarding, nor was food hoarding increased by LIPX in PVNx hamsters. The partial body fat compensation by LIPX + PVNx hamsters suggests that the damaged PVN did not cause a general failure to sense energy deficits but did affect the ability to integrate internal and external energy stores.


2001 ◽  
Vol 281 (2) ◽  
pp. R519-R527 ◽  
Author(s):  
Alexander S. Kauffman ◽  
Alessandra Cabrera ◽  
Irving Zucker

Few studies have directly addressed the impact of fur on seasonal changes in energy intake. The daily food intake of Siberian hamsters ( Phodopus sungorus) was measured under simulated summer and winter conditions in intact animals and those with varying amounts of pelage removed. Energy intake increased up to 44% above baseline control values for approximately 2–3 wk after complete shaving. Increases in food intake varied with condition and were greater in hamsters housed in short than long day lengths and at low (5°C) than moderate (23°C) ambient temperatures. Removal of 8 cm2 of dorsal fur, equivalent to 30% of the total dorsal fur surface, increased food intake, but removal of 4 cm2 had no effect. An 8-cm2 fur extirpation from the ventral surface did not increase food consumption. Food intake was not influenced differentially by fur removal from above brown adipose tissue hot spots. Fur plays a greater role in energy balance in winter- than summer-acclimated hamsters and conserves energy under a wide range of environmental conditions.


2005 ◽  
Vol 289 (1) ◽  
pp. R29-R36 ◽  
Author(s):  
Diane E. Day ◽  
Erin Keen-Rhinehart ◽  
Timothy J. Bartness

Fasting has widespread physiological and behavioral effects such as increases in arcuate nucleus neuropeptide Y (NPY) gene expression in rodents, including Siberian hamsters. Fasting also stimulates foraging and food hoarding (appetitive ingestive behaviors) by Siberian hamsters but does relatively little to change food intake (consummatory ingestive behavior). Therefore, we tested the effects of third ventricular NPY Y1 ([Pro34]NPY) or Y5 ([d-Trp34]NPY) receptor agonists on these ingestive behaviors using a wheel running-based food delivery system coupled with simulated burrow housing. Siberian hamsters had 1) no running wheel access and free food, 2) running wheel access and free food, or 3) foraging requirements (10 or 50 revolutions/pellet). NPY (1.76 nmol) stimulated food intake only during the first 4 h postinjection (∼200–1,000%) and mostly in hamsters with a foraging requirement. The Y1 receptor agonist markedly increased food hoarding (250–1,000%), increased foraging as well as wheel running per se, and had relatively little effect on food intake (<250%). Unlike NPY, the Y5 agonist significantly increased food intake, especially in foraging animals (∼225–800%), marginally increased food hoarding (250–500%), and stimulated foraging and wheel running 4–24 h postinjection, with the distribution of earned pellets favoring eating versus hoarding across time. Across treatments, food hoarding predominated early postinjection, whereas food intake tended to do so later. Collectively, NPY stimulated both appetitive and consummatory ingestive behaviors in Siberian hamsters involving Y1/Y5 receptors, with food hoarding and foraging/wheel running (appetitive) more involved with Y1 receptors and food intake (consummatory) with Y5 receptors.


2012 ◽  
Vol 302 (1) ◽  
pp. R37-R48 ◽  
Author(s):  
Brett J. W. Teubner ◽  
Erin Keen-Rhinehart ◽  
Timothy J. Bartness

We previously demonstrated that 3rd ventricular (3V) neuropeptide Y (NPY) or agouti-related protein (AgRP) injection potently stimulates food foraging/hoarding/intake in Siberian hamsters. Because NPY and AgRP are highly colocalized in arcuate nucleus neurons in this and other species, we tested whether subthreshold doses of NPY and AgRP coinjected into the 3V stimulates food foraging, hoarding, and intake, and/or neural activation [c-Fos immunoreactivity (c-Fos-ir)] in hamsters housed in a foraging/hoarding apparatus. In the behavioral experiment, each hamster received four 3V treatments by using subthreshold doses of NPY and AgRP for all behaviors: 1) NPY, 2) AgRP, 3) NPY+AgRP, and 4) saline with a 7-day washout period between treatments. Food foraging, intake, and hoarding were measured 1, 2, 4, and 24 h and 2 and 3 days postinjection. Only when NPY and AgRP were coinjected was food intake and hoarding increased. After identical treatment in separate animals, c-Fos-ir was assessed at 90 min and 14 h postinjection, times when food intake (0–1 h) and hoarding (4–24 h) were uniquely stimulated. c-Fos-ir was increased in several hypothalamic nuclei previously shown to be involved in ingestive behaviors and the central nucleus of the amygdala (CeA), but only in NPY+AgRP-treated animals (90 min and 14 h: magno- and parvocellular regions of the hypothalamic paraventricular nucleus and perifornical area; 14 h only: CeA and sub-zona incerta). These results suggest that NPY and AgRP interact to stimulate food hoarding and intake at distinct times, perhaps released as a cocktail naturally with food deprivation to stimulate these behaviors.


2009 ◽  
Vol 55 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Zhijun Zhao ◽  
Jing Cao ◽  
Ye Tian ◽  
Ruirui Wang ◽  
Guiying Wang

Abstract When small animals are faced with an unpredictable food supply, they can adapt by altering different components of their energy budget such as energy intake, metabolic rate, rate of non-shivering thermogenesis (NST) or behaviour. The present study examined the effect of stochastic food deprivation (FD) on body mass, food intake, resting metabolic rate (RMR), NST and behaviour in male Swiss mice. During a period of 4 weeks’ FD, animals were fed ad libitum for a randomly assigned 4 days each week, but were deprived of food for the other 3 days. The results showed that body mass significantly dropped on FD days compared to controls. Food intake of FD mice increased significantly on ad libitum days, ensuring cumulative food intake, final body mass, fat mass, RMR and NST did not differ significantly from controls. Moreover, gastrointestinal tract mass increased in FD mice, but digestibility decreased. In general, activity was higher on deprived days, and feeding behaviour was higher on ad libitum days suggesting that Swiss mice are able to compensate for stochastic FD primarily by increasing food intake on ad libitum days, and not by reducing energy expenditure related to RMR or NST.


Sign in / Sign up

Export Citation Format

Share Document