Neuropeptide stimulation of the nitric oxide signaling pathway in Drosophila melanogaster Malpighian tubules

1997 ◽  
Vol 273 (2) ◽  
pp. R823-R827 ◽  
Author(s):  
S. A. Davies ◽  
E. J. Stewart ◽  
G. R. Huesmann ◽  
N. J. Skaer ◽  
S. H. Maddrell ◽  
...  

Activation of the nitric oxide (NO) and guanosine 3', 5'-cyclic monophosphate (cGMP) signaling pathway stimulates fluid secretion by the Drosophila melanogaster Malpighian tubule. The neuropeptide cardioacceleratory peptide 2b (CAP2b) has been previously shown to stimulate fluid secretion in this epithelium by elevating intracellular cGMP levels. Therefore, it was of interest to investigate if CAP2b acts through NO in isolated tubules and thus presumably through stimulation of a tubule NO synthase (NOS). We show here by reverse-transcription polymerase chain reaction that Drosophila NOS (dNOS) is expressed in Malpighian tubules. Biochemical assays of NOS activity in whole tubules show that CAP2b significantly stimulates NOS activity. Additionally, fluid secretion and cyclic nucleotide assays show that CAP2b-induced elevation of intracellular cGMP levels and fluid secretion rates are dependent on the activation of a soluble guanylate cyclase. Treatment of tubules with a specific NOS inhibitor abolishes the CAP2b-induced rise in intracellular cGMP levels. These data indicate that CAP2b stimulates NOS and therefore, endogenous NO production, which, in turn, stimulates a soluble guanylate cyclase. This is the first demonstration of stimulation of an endogenous NOS by a defined peptide in Drosophila.

2010 ◽  
Vol 28 (8) ◽  
pp. 1666-1675 ◽  
Author(s):  
Yuliya Sharkovska ◽  
Philipp Kalk ◽  
Bettina Lawrenz ◽  
Michael Godes ◽  
Linda Sarah Hoffmann ◽  
...  

1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


Reproduction ◽  
2021 ◽  
Vol 161 (1) ◽  
pp. 31-41
Author(s):  
Deepak S Hiremath ◽  
Fernanda B M Priviero ◽  
R Clinton Webb ◽  
CheMyong Ko ◽  
Prema Narayan

Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.


2021 ◽  
Vol 20 (6) ◽  
pp. 3035
Author(s):  
Zh. D. Kobalava ◽  
P. V. Lazarev

Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.


1999 ◽  
Vol 277 (3) ◽  
pp. H978-H985 ◽  
Author(s):  
Takafumi Iesaki ◽  
Sachin A. Gupte ◽  
Pawel M. Kaminski ◽  
Michael S. Wolin

The inhibitor of soluble guanylate cyclase (sGC) stimulation by nitric oxide (NO), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), was examined for its effects on the prolonged relaxation of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to peroxynitrite (ONOO−) and on H2O2-elicited relaxation and sGC stimulation. Our previous studies suggest that ONOO− causes a prolonged relaxation of BPA by regenerating NO and that a 2-min exposure of BCA or BPA to 50 nM NO causes an ONOO−-elicited relaxation. The relaxation of K+-precontracted BCA to 50 nM NO or 100 μM ONOO− was essentially eliminated by 10 μM ODQ. ODQ also eliminated relaxation to 0.1 nM-10 μM of NO donor S-nitroso- N-acetyl-penicillamine (SNAP), but it did not alter relaxation to 1–300 μM H2O2. Similar responses were also observed in BPA. ODQ did not increase lucigenin-detectable superoxide production in BCA, and it did not alter luminol-detectable endogenous ONOO− formation observed during a 2-min exposure of BCA to 50 nM NO. In addition, ODQ did not affect tissue release of NO after 2 min exposure of BCA to 50 nM NO. The activity of sGC in BPA homogenate that is stimulated by endogenous H2O2was not altered by ODQ, whereas sGC activity in the presence of 10 μM SNAP (+fungal catalase) was reduced by ODQ. Thus relaxation of K+-precontracted BCA and BPA to ONOO− appears to be completely mediated by NO stimulation of sGC, whereas the actions of ODQ suggest that NO is not involved in H2O2-elicited relaxation and sGC stimulation. This study did not detect evidence for the participation of additional mechanisms potentially activated by ONOO− in the responses studied.


2018 ◽  
Vol 21 ◽  
pp. 38-45 ◽  
Author(s):  
Ariane Migliato Martinelli ◽  
Carla Nascimento dos Santos Rodrigues ◽  
Thiago Francisco de Moraes ◽  
Gerson Jhonatan Rodrigues

Purpose. In endothelial cells, investigate if the soluble guanylate cyclase (sGC) activation or stimulation is able to potentiate the relaxation in vessels. Methods. Aortic and coronary rings with and without endothelium were placed in a myograph and cumulative concentration-effect curves for DETA-NO or ataciguat were performed. Nitric oxide (NO) were measured by fluorescence or by selective electrode in human umbilical endothelial cells (HUVECs) in response to some treatments, including ataciguat, 8-Br-cGMP and A23187. Results. The presence of the endothelium potentiated the relaxation induced by DETA-NO in aortic and coronary rings. In addition, in aortic rings the endothelium potentiated the relaxation induced by ataciguat. In the presence of nitric oxide synthase (NOS) inhibitor, the endothelium effect was abolished to DETA-NO or ataciguat, in both vessels. Ataciguat, 8-Br-cGMP and A23187 were able to induce NO production in HUVECs cells. In the presence of NOS inhibitor, the NO production induced by ataciguat and 8-Br-cGMP was abolished. Conclusions. Our results suggest that in aortic and coronary rings the endothelium potentiates the relaxation induced by activation or stimulation of sGC through a mechanism dependent of NOS activation. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2011 ◽  
Vol 11 (S1) ◽  
Author(s):  
Oleg V Evgenov ◽  
Lin Zou ◽  
Ming Zhang ◽  
Mari Mino-Kenudson ◽  
Eugene J Mark ◽  
...  

Life Sciences ◽  
2018 ◽  
Vol 203 ◽  
pp. 203-209 ◽  
Author(s):  
Masashi Tawa ◽  
Takahide Furukawa ◽  
Hiroko Tongu ◽  
Mai Sugihara ◽  
Satoko Taguwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document