scholarly journals Role of endogenous PACAP in catecholamine secretion from the rat adrenal gland

2001 ◽  
Vol 281 (5) ◽  
pp. R1562-R1567 ◽  
Author(s):  
Yasuo Fukushima ◽  
Hirohiko Hikichi ◽  
Kazuhiko Mizukami ◽  
Takahiro Nagayama ◽  
Makoto Yoshida ◽  
...  

We elucidated the contribution of endogenous pituitary adenylate cyclase-activating polypeptide (PACAP) to neurally evoked catecholamine secretion from the isolated perfused rat adrenal gland. Infusion of PACAP (100 nM) increased adrenal epinephrine and norepinephrine output. The PACAP-induced catecholamine output responses were inhibited by the PACAP type I receptor antagonist PACAP- (6-38) (30–3,000 nM) but were resistant to the PACAP type II receptor antagonist [Lys1,Pro2,5,Ara3,4,Tyr6]-vasoactive intestinal peptide (LPAT-VIP; 30–3,000 nM). Transmural electrical stimulation (ES; 1–10 Hz) or infusion of ACh (6–200 nM) increased adrenal epinephrine and norepinephrine output. PACAP-(6–38) (3,000 nM), but not LPAT-VIP, also inhibited the ES-induced catecholamine output responses. However, PACAP-(6–38) did not affect the ACh-induced catecholamine output responses. PACAP at low concentrations (0.3–3 nM), which had no influence on catecholamine output, enhanced the ACh-induced catecholamine output responses, but not the ES-induced catecholamine output responses. These results suggest that PACAP is released from the nerve endings to facilitate the neurally evoked catecholamine secretion through PACAP type I receptors in the rat adrenal gland.

2001 ◽  
Vol 281 (2) ◽  
pp. R495-R501 ◽  
Author(s):  
Yasuo Fukushima ◽  
Takahiro Nagayama ◽  
Hisako Kawashima ◽  
Hirohiko Hikichi ◽  
Makoto Yoshida ◽  
...  

We elucidated the functional contribution of voltage-dependent calcium channels (VDCCs) and adenylate cyclase to epinephrine (Epi) and norepinephrine (NE) secretion induced by pituitary adenylate cyclase-activating polypeptide (PACAP) in the isolated perfused rat adrenal gland. PACAP increased Epi and NE output, which was inhibited by perfusion with calcium-free solution or by nifedipine, an L-type VDCC blocker. However, the PACAP-induced responses were resistant to ω-conotoxin GVIA, an N-type VDCC blocker, or ω-conotoxin MVIIC, a P/Q-type VDCC blocker. MDL-12330A, an adenylate cyclase inhibitor, inhibited the PACAP-induced increase in Epi, but not NE, output. Treatment with nifedipine and MDL-12330A caused additive inhibition of the PACAP-induced catecholamine responses. These results suggest that opening of L-type VDCCs is responsible for adrenal catecholamine secretion induced by PACAP and that activation of adenylate cyclase is involved in the PACAP-induced Epi, but not NE, secretion. These pathways may act independently of each other.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


Author(s):  
Giuseppina Mazzocchi ◽  
Ludwik Malendowicz ◽  
Giuliano Neri ◽  
Paola Andreis ◽  
Agnieszka Ziolkowska ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 451
Author(s):  
Galina Palyanova ◽  
Valery Murzin ◽  
Andrey Borovikov ◽  
Nikolay Karmanov ◽  
Sergei Kuznetsov

Composition of native gold and minerals in intergrowth with rhyolites of the Chudnoe Au-Pd-REE deposit (Subpolar Urals, Russia) was studied using optical microscopy, scanning electron microscopy, and electron microprobe analysis. Five varieties of native gold have been identified, based on the set of impurity elements and their quantities, and on intergrown minerals. Native gold in rhyolites from the Ludnaya ore zone is homogeneous and contains only Ag (fineness 720‰, type I). It is in intergrowth with fuchsite or allanite and mertieite-II. In rhyolites from the Slavnaya ore zone, native gold is heterogeneous, has a higher fineness, different sets and contents of elements: Ag, Cu, 840–860‰ (type II); Ag, Cu, Pd, 830–890‰ (III); Ag, Pd, Cu, Hg, 840–870‰ (IV). It occurs in intergrowth with fuchsite, albite, and mertieite-II (type II), or albite, quartz, and atheneite (III), or quartz, albite, K-feldspar, and mertieite-II (IV). High fineness gold (930–1000‰, type V) with low contents of Ag, Cu, and Pd or their absence occurs in the form as microveins, fringes and microinclusions in native gold II–IV. Tetra-auricupride (AuCu) is presented as isometric inclusions in gold II and platelets in the decay structures in gold III and IV. The preliminary data of a fluid inclusions study showed that gold mineralization at the Chudnoe deposit could have been formed by chloride fluids of low and medium salinity at temperatures from 105 to 230 °C and pressures from 5 to 115 MPa. The formation of native gold I is probably related to fuchsitization and allanitization of rhyolites. The formation of native gold II-V is also associated with the same processes, but it is more complicated and occurred later with a significant role of Na-, Si-, and K-metasomatism. The presence of Pd and Cu in the ores and Cr in fuchsite indicates the important role of mafic-ultramafic magmatism.


2010 ◽  
Vol 10 ◽  
pp. 2367-2384 ◽  
Author(s):  
Eduardo Pérez-Gómez ◽  
Gaelle del Castillo ◽  
Juan Francisco Santibáñez ◽  
Jose Miguel Lêpez-Novoa ◽  
Carmelo Bernabéu ◽  
...  

Endoglin (CD105) is an auxiliary membrane receptor of transforming growth factor beta (TGF-β) that interacts with type I and type II TGF-β receptors and modulates TGF-β signaling. Endoglin is overexpressed in the tumor-associated vascular endothelium, where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. In addition, recent studies on human and experimental models of carcinogenesis point to an important tumor cell–autonomous role of endoglin by regulating proliferation, migration, invasion, and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human epithelial carcinogenesis, although it can also promote metastasis in other types of cancer. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years.


1985 ◽  
Vol 248 (3) ◽  
pp. R302-R307 ◽  
Author(s):  
W. W. Winder ◽  
M. L. Terry ◽  
V. M. Mitchell

We have investigated the physiological role of the marked increase in plasma epinephrine that occurs in fasted exercising rats. Fasted adrenodemedullated (ADM) rats show a marked reduction in endurance run times compared with sham-operated (SO) controls. After running for 30 min at 21 m/min up a 10% grade, ADM rats' blood glucose was 2.9 +/- 0.1 mM vs. 4.3 +/- 0.2 mM in SO rats. At the same time, blood lactate was 3.0 +/- 0.2 mM in SO rats compared with 1.0 +/- 0.1 mM in ADM rats. Glycogenolysis was impaired in ADM rats in the fast-twitch white region of the quadriceps, lateral gastrocnemius, and soleus muscles but not in the fast-twitch red region of the quadriceps muscle. Hepatic adenosine 3',-5'-cyclic monophosphate was increased to the same extent in ADM and SO rats during exercise. Infusion of epinephrine into ADM rats during exercise corrected the hypoglycemia, restored lactate to normal, and stimulated glycogenolysis in soleus, white quadriceps, and lateral gastrocnemius muscles. Epinephrine-dependent glycogenolysis in contracting type I and noncontracting type II muscle fibers apparently provides essential quantities of lactate for hepatic gluconeogenesis in fasted exercising rats.


Sign in / Sign up

Export Citation Format

Share Document