scholarly journals AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats

2006 ◽  
Vol 290 (5) ◽  
pp. F1024-F1033 ◽  
Author(s):  
Xiao C. Li ◽  
Duncan J. Campbell ◽  
Mitsuru Ohishi ◽  
Shao Yuan ◽  
Jia L. Zhuo

Angiotensin IV (ANG IV), an active ANG II fragment, has been shown to induce systemic and renal cortical effects by binding to ANG IV (AT4) receptors and activating unique signaling transductions unrelated to classical type 1 (AT1) or type 2 (AT2) receptors. We tested whether ANG IV exerts systemic and renal cortical effects on blood pressure, renal microvascular smooth muscle cells (VSMCs), and glomerular mesangial cells (MC) and, if so, whether AT1 receptor-activated signaling is involved. In anesthetized rats, systemic infusion of ANG II, ANG III, or ANG IV (0.01, 0.1, and 1.0 nmol·kg−1·min−1 iv) caused dose-dependent increases in mean arterial pressure (MAP) and decreases in renal cortical blood flow (CBF; P < 0.01). ANG II also induced dose-dependent reductions in renal medullary blood flow ( P < 0.01), whereas ANG IV did not. ANG IV-induced pressor and renal cortical vasoconstriction were completely abolished by AT1 receptor blockade with losartan (5 mg/kg iv; P < 0.05). When ANG IV (1 nmol·kg−1·min−1) was infused directly in the renal artery, CBF was reduced by >30%, and the response was also blocked by losartan ( P < 0.01). In the renal cortex, unlabeled ANG IV displaced 125I-labeled [Sar1,Ile8]ANG II binding, whereas unlabeled ANG II (10 μM) inhibited 125I-labeled Nle1-ANG IV (AT4) binding in a concentration-dependent manner ( P < 0.01). In freshly isolated renal VSMCs, ANG IV (100 nM) increased intracellular Ca2+ concentration, and the effect was blocked by losartan and U-73122, a selective inhibitor of phospholipase C/inositol trisphosphate/Ca2+ signaling (1 μM). In cultured rat MCs, ANG IV (10 nM) induced mitogen-activated protein kinase extracellular/signal-regulated kinase 1/2 phosphorylation via AT1 receptor- and phospholipase C-activated signaling. These results suggest that, at nanomolar concentrations, ANG IV can increase MAP and induce renal cortical effects by interacting with AT1 receptor-activated signaling.

2002 ◽  
Vol 283 (4) ◽  
pp. L707-L716 ◽  
Author(s):  
Yong D. Li ◽  
Edward R. Block ◽  
Jawaharlal M. Patel

Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-α/Akt (PKB-α) activities, as well as downstream p70 ribosomal S6 kinase (p70S6K) activities and/or phosphorylation of these proteins. ANG IV also significantly increased 5-bromo-2′-deoxy-uridine incorporation into newly synthesized DNA in a concentration- and time-dependent manner. Pretreatment of cells with wortmannin and LY-294002, inhibitors of PI3K, or rapamycin, an inhibitor of the mammalian target of rapamycin kinase and p70S6K, diminished the ANG IV-mediated activation of PDK-1 and PKB-α as well as phosphorylation of p70S6K. Although an inhibitor of mitogen-activated protein kinase kinase, PD-98059, but not rapamycin, blocked ANG IV-induced phosphorylation of ERK1/2, both PD-98059 and rapamycin independently caused partial reduction in ANG IV-mediated cell proliferation. However, simultaneous treatment with PD-98059 and rapamycin resulted in total inhibition of ANG IV-induced cell proliferation. These results demonstrate that ANG IV-induced DNA synthesis is regulated in a coordinated fashion involving multiple signaling modules in PAEC.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


1996 ◽  
Vol 270 (3) ◽  
pp. H857-H868 ◽  
Author(s):  
R. M. Touyz ◽  
J. Fareh ◽  
G. Thibault ◽  
B. Tolloczko ◽  
R. Lariviere ◽  
...  

Vasoactive peptides may exert inotropic and chronotropic effects in cardiac muscle by modulating intracellular calcium. This study assesses effects of angiotensin II (ANG II) and endothelin-1 (ET-1) on intracellular free calcium concentration ([Ca2+]i) in cultured cardiomyocytes from neonatal and adult rats. [Ca2+]i was measured microphotometrically and by digital imaging using fura 2 methodology. Receptor subtypes through which these agonists induce responses were determined pharmacologically and by radioligand binding studies. ANG II and ET-1 increased neonatal atrial and ventricular cell [Ca2+]i transients in a dose-dependent manner. ANG II (10(-11) to 10(-7) M) failed to elicit [Ca2+]i responses in adult cardiomyocytes, whereas ET-1 increased [Ca2+]i in a dose-dependent manner. The ETA receptor antagonist BQ-123 significantly reduced (P 7< 0.05) ET-1 induced responses, and the ETB receptor agonist IRL-1620 (10(-7) to 10(-5) M) significantly increased (P < 0.05) [Ca2+]i in neonatal and adult cardiomyocytes. ET-1 binding studies demonstrated 85% displacement by BQ-123 and approximately 15% by the ETB receptor agonist sarafotoxin S6c, suggesting a predominance of ETA receptors. Competition binding studies for ANG II failed to demonstrate significant binding on adult ventricular myocytes, indicating the absence or presence of very few ANG II receptors. These data demonstrate that ANG II and ET-1 have stimulatory [Ca2+]i effects on neonatal cardiomyocytes, whereas in adult cardiomyocytes, ANG II-induced effects are insignificant, and only ET-1-induced responses, which are mediated predominantly via ETA receptors, are preserved. Cardiomyocyte responses to vasoactive peptides may thus vary with cardiac development.


1997 ◽  
Vol 17 (12) ◽  
pp. 1309-1318 ◽  
Author(s):  
Naoaki Horinaka ◽  
Tang-Yong Kuang ◽  
Hazel Pak ◽  
Robert Wang ◽  
Jane Jehle ◽  
...  

The possibility that adenosine and ATP-sensitive potassium channels (KATP) might be involved in the mechanisms of the increases in cerebral blood flow (CBF) that occur in insulin-induced hypoglycemia was examined. Cerebral blood flow was measured by the [14C]iodoantipyrine method in conscious rats during insulin-induced, moderate hypoglycemia (2 to 3 mmol/L glucose in arterial plasma) after intravenous injections of 10 to 20 mg/kg of caffeine, an adenosine receptor antagonist, or intracisternal infusion of 1 to 2 μmol/L glibenclamide, a KATP channel inhibitor. Cerebral blood flow was also measured in corresponding normoglycemic and drug-free control groups. Cerebral blood flow was 51% higher in untreated hypoglycemic than in untreated normoglycemic rats ( P < 0.01). Caffeine had a small, statistically insignificant effect on CBF in normoglycemic rats, but reduced the CBF response to hypoglycemia in a dose-dependent manner, i.e., 27% increase with 10 mg/kg and complete elimination with 20 mg/kg. Chemical determinations by HPLC in extracts of freeze-blown brains showed significant increases in the levels of adenosine and its degradation products, inosine and hypoxanthine, during hypoglycemia ( P < 0.05). Intracisternal glibenclamide had little effect on CBF in normoglycemia, but, like caffeine, produced dose-dependent reductions in the magnitude of the increases in CBF during hypoglycemia, i.e., +66% with glibenclamide-free artificial CSF administration, +25% with 1 μmol/L glibenclamide, and almost complete blockade (+5%) with 2 μmol/L glibenclamide. These results suggest that adenosine and KATP channels may play a role in the increases in CBF during hypoglycemia.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1989 ◽  
Vol 257 (5) ◽  
pp. C888-C895 ◽  
Author(s):  
E. Coezy ◽  
I. Darby ◽  
J. Mizrahi ◽  
B. Cantau ◽  
M. H. Donnadieu ◽  
...  

The aim of this study was to examine in Hep G2, a human hepatoma-derived cell line, the presence of angiotensin II (ANG II) receptors and the effect of ANG II and its analogues on angiotensinogen production. The presence of ANG II receptors was demonstrated using a long-acting ANG II analogue, 125I-labeled [Sar1]ANG II. A single class of specific binding sites was identified in these cells with a dissociation constant (Kd) of 2 nM. The number and affinity of these binding sites were not changed by [Sar1]ANG II treatment over 24 h. ANG II showed an inhibitory effect on angiotensinogen production. [Sar1]ANG II also exhibited a similar inhibitory effect as that of ANG II but to a greater extent and therefore was used throughout these studies. [Sar1]ANG II inhibited angiotensinogen production in a dose-dependent manner, exhibiting a half-maximal inhibitory concentration (IC50) of 2 nM. Other ANG II analogues showed similar effects on angiotensinogen production. In order of decreasing ability, they were [Sar1]ANG II greater than [Sar1-Ala8]ANG II greater than [Sar1-Val8]ANG II greater than [Sar1-Val5-(Br5)-Phe8]ANG II greater than [Sar1-Val5-DPhe8]ANG II. Results of these studies show that the Hep G2 cell possesses specific ANG II receptors and that [Sar1]ANG II induces a dose-dependent inhibition of angiotensinogen production in this system.


1981 ◽  
Vol 241 (6) ◽  
pp. G469-G477 ◽  
Author(s):  
P. R. Kvietys ◽  
J. M. McLendon ◽  
D. N. Granger

In an autoperfused dog ileum preparation, artificial pressure, venous outflow pressure, blood flow, and arteriovenous oxygen difference were measured while bile and bile salt solutions, at physiological concentrations, were placed in the lumen. Intraluminal placement of endogenous bile, synthetic bile, or bile salt solutions increased ileal blood flow (99 +/- 10, 94 +/- 20, and 104 +/- 17%, respectively) and oxygen uptake (30 +/- 5, 36 +/- 9, and 28 +/- 5%, respectively). Endogenous bile pretreated with cholestyramine, a bile salt-sequestering resin, did not alter ileal blood flow, yet increased ileal oxygen uptake by 11 +/- 3%, a response similar to that observed while Tyrode's solution (the vehicle) was in the lumen. Intra-arterial infusion of bile salts increased ileal blood flow in a dose-dependent manner, while not significantly altering ileal oxygen uptake. The results of the present study indicate that bile salts play an important role in the functional (postprandial) hyperemia in the ileum by 1) directly dilating the ileal vasculature and 2) enhancing ileal metabolism during their active absorption.


1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


1989 ◽  
Vol 256 (1) ◽  
pp. F171-F178 ◽  
Author(s):  
D. Schlondorff ◽  
P. Singhal ◽  
A. Hassid ◽  
J. A. Satriano ◽  
S. DeCandido

We evaluated the role of GTP-binding proteins in the activation of phospholipase C, release of arachidonic acid, and synthesis of prostaglandin (PG) E2 in response to platelet-activating factor (PAF) and angiotensin II (ANG II) in cultured rat mesangial cells. Pretreatment with pertussis toxin (PT) decreased PGE2 formation and arachidonic acid release in response to PAF and ANG II but not that to A 23187. PT pretreatment also inhibited formation of inositol trisphosphate (IP3) in response to ANG II or PAF but did not significantly alter the rise in intracellular calcium detected by fura-2. PT catalyzed ADP ribosylation of two proteins of molecular mass approximately 40 and 41 kDa. Further evidence for involvement of GTP-binding protein in phospholipase C activation was that GTP-gamma S stimulated IP3 generation. Immunoblots with antibodies directed against different inhibitory alpha subunits of GTP-binding proteins showed that the major 40-kDa PT substrate reacted with an antibody directed against a decapeptide of the G protein subunit alpha i2 that is also found in leukocytes. This was further confirmed by Northern blot that showed the existence of mRNA in mesangial cells that hybridized with a cDNA probe for G alpha i2. In addition lesser amounts of mRNA hybridized with a restriction fragment cDNA probe for G alpha i3, which corresponds to the 41-kDa substrate for PT ribosylation. These results show that phospholipase C activation by PAF and ANG II in mesangial cells involves a specific G protein, most likely G alpha i2.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 259 (2) ◽  
pp. H464-H472 ◽  
Author(s):  
T. Yoshimura ◽  
R. R. Magness ◽  
C. R. Rosenfeld

During ovine pregnancy the uteroplacental vasculature is less responsive to angiotensin II (ANG II)-induced vasoconstriction than the systemic vasculature, whereas responses to alpha-agonists are just the opposite. Comparisons of fetal systemic and placental vascular responses to these agents are not well described, nor have they been compared with maternal responses. We determined steady-state responses to fetal infusions (5-7 min) of ANG II (0.023-5.73 micrograms/min) and phenylephrine (PHEN, 0.031-7.64 micrograms/min), continuously monitoring mean arterial pressure (MAP), heart rate (HR), and umbilical blood flow (UmBF). Although both vasoconstrictors caused dose-dependent increases in MAP and umbilical vascular resistance (UmVR), responsiveness (delta MAP and delta UmVR) to ANG II (mol/min) was 35- to 60-fold greater than to PHEN. ANG II caused dose-dependent decreases in UmBF (2-48%); PHEN had minimal effects except at the highest dose, UmBF decreasing only 18%. Although patterns of fetal responses of MAP, UmBF, and UmVR to ANG II resembled maternal responses of MAP and uterine blood flow and uterine vascular resistance, the former were greatly attenuated. Similar observations were made with PHEN for UmBF and UmVR but not MAP. ANG II is a more potent fetal systemic and placental vasoconstrictor than PHEN; however, compared with those of the mother the responses are attenuated. Moreover, the fetoplacental vascular bed appears unresponsive to alpha-adrenergic stimulation, possibly reflecting a mechanism for maintaining UmBF when plasma catecholamines are elevated.


Sign in / Sign up

Export Citation Format

Share Document