Effects of sodium nitrite on ischemia-reperfusion injury in the rat kidney

2006 ◽  
Vol 290 (4) ◽  
pp. F779-F786 ◽  
Author(s):  
Mahesh Basireddy ◽  
T. Scott Isbell ◽  
Xinjun Teng ◽  
Rakesh P. Patel ◽  
Anupam Agarwal

Reactive oxygen and nitrogen species play a key role in the pathophysiology of renal ischemia-reperfusion (I/R) injury. Recent studies have shown that nitrite (NO2−) serves as an endogenous source of nitric oxide (NO), particularly in the presence of hypoxia and acidosis. Nanomolar concentrations of NO2− reduce injury following I/R in the liver and heart in vivo. The purpose of this study was to evaluate the role of NO2− in renal I/R injury. Male Sprague-Dawley rats underwent a unilateral nephrectomy followed by 45 min of ischemia of the contralateral kidney or sham surgery under isoflurane anesthesia. Animals received normal saline, sodium NO2−, or sodium nitrate (NO3−; 1.2 nmol/g body wt ip) at 22.5 min after induction of ischemia or 15 min before ischemia. A separate set of animals received saline, NO2−, or NO3− (0.12, 1.2, or 12 nmol/g body wt iv) 45 min before ischemia. Serum creatinine and blood urea nitrogen were increased following I/R injury but were not significantly different among treatment groups at 24 and 48 h after acute renal injury. Interestingly, NO3− administration appeared to worsen renal injury. Histological scoring for loss of brush border, tubular necrosis, and red blood cell extravasation showed no significant differences among the treatment groups. The results indicate that, contrary to the protective effects of NO2− in I/R injury of the liver and heart, NO2− does not provide protection in renal I/R injury and suggest a unique metabolism of NO2− in the kidney.

2007 ◽  
Vol 292 (2) ◽  
pp. F888-F894 ◽  
Author(s):  
Kristin Kirkby ◽  
Chris Baylis ◽  
Anupam Agarwal ◽  
Byron Croker ◽  
Linda Archer ◽  
...  

Exogenous bilirubin (BR) substitutes for the protective effects of heme oxygenase (HO) in several organ systems. Our objective was to investigate the effects of exogenous BR in an in vivo model of ischemia-reperfusion injury (IRI) in the rat kidney. Four groups of male Sprague-Dawley rats were anesthetized using isoflurane in oxygen and treated with 1) 5 mg/kg intravenous (iv) BR, 1 h before ischemia and 6-h reperfusion; 2) vehicle 1 h before ischemia and 6-h reperfusion; 3) 20 mg/kg iv BR, 1 h before and during ischemia; and 4) vehicle 1 h before and during ischemia. Bilateral renal clamping (30 min) was followed by 6-h reperfusion. Infusion of 5 mg/kg iv BR achieved target levels in the serum at 6 h postischemia (31 ± 9 μmol/l). Infusion of 20 mg/kg BR reached 50 ± 22 μmol/l at the end of ischemia, and a significant improvement was seen in serum creatinine at 6 h (1.07 ± 28 vs. 1.38 ± 0.18 mg/dl, P = 0.043). Glomerular filtration rate, estimated renal plasma flow, fractional excretion of electrolytes, and renal vascular resistance were not significantly improved in BR-treated groups. Histological grading demonstrated a trend toward preservation of cortical proximal tubules in rats receiving 20 mg/kg iv BR compared with control; however, neither BR dose provided protection against injury to the renal medulla. At the doses administered, iv BR did not provide complete protection against IRI in vivo. Combined supplementation of both BR and carbon monoxide may be required to preserve renal blood flow and adequately substitute for the protective effects of HO in vivo.


2004 ◽  
Vol 287 (5) ◽  
pp. F979-F989 ◽  
Author(s):  
Joao Seda Neto ◽  
Atsunori Nakao ◽  
Kei Kimizuka ◽  
Anna Jeanine Romanosky ◽  
Donna B. Stolz ◽  
...  

Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against oxidative stress. We hypothesized that CO would protect ischemia-reperfusion (I/R) injury of transplanted organs, and the efficacy of CO was studied in the rat kidney transplantation model. A Lewis rat kidney graft, preserved in University of Wisconsin solution at 4°C for 24 h, was orthotopically transplanted into syngeneic rats. Recipients were maintained in room air or exposed to CO (250 ppm) in air for 1 h before and 24 h after transplantation. Animals were killed 1, 3, 6, and 24 h after transplantation to assess efficacy of inhaled CO. Rapid upregulation of mRNA for IL-6, IL-1β, TNF-α, ICAM-1, heme oxygenase-1, and inducible nitric oxide synthase was observed within 3 h after transplantation in the control grafts of air-exposed recipients, associating with histopathological evidences of acute tubular necrosis, interstitial hemorrhage, and edema. In contrast, the increase of inflammatory mediators was markedly inhibited in kidney grafts of CO-treated recipients, which correlated with improved renal cortical blood flow. Further detailed morphological analyses revealed that CO preserved the glomerular vascular architecture and podocyte viability with less apoptosis of tubular epithelial cells and less ED1+ macrophage infiltration. CO inhalation resulted in improved serum creatinine levels and clearance, and animal survival was significantly improved with CO to 60.5 from 25 days in untreated controls. The study demonstrates that exposure of kidney graft recipients to CO at a low concentration can impart significant protective effects against renal I/R injury and improve function of renal grafts.


2002 ◽  
Vol 282 (3) ◽  
pp. F417-F423 ◽  
Author(s):  
Ming Yin ◽  
Zhi Zhong ◽  
Henry D. Connor ◽  
Hartwig Bunzendahl ◽  
William F. Finn ◽  
...  

Although glycine prevents renal tubular cell injury in vitro, its effect in vivo is not clear. The purpose of this study was to investigate whether a bolus injection of glycine given before reperfusion plus continuous dietary supplementation afterward would reduce renal injury caused by ischemia-reperfusion. Female Sprague-Dawley rats received a semisynthetic powdered diet containing 5% glycine and 15% casein (glycine group) or 20% casein (control group). Two days later, renal ischemia was produced by cross-clamping the left renal vessels for 15 min, followed by reperfusion. The right kidney was removed before reperfusion. The postischemic glomerular filtration rate (GFR) showed that renal function was less impaired and recovered more quickly in rats receiving glycine. For example, at day 7, GFR in controls (0.31 ± 0.03 ml · min−1 · 100 g−1) was about one-half that of glycine-treated rats (0.61 ± 0.06 ml · min−1 · 100 g−1, P < 0.05). Furthermore, tubular injury and cast formation observed in controls was minimized by glycine (pathology score, 3.2 ± 0.4 vs. 1.0 ± 0.4, P < 0.05). Urinary lactate dehydrogenase (LDH) concentration was elevated by ischemia-reperfusion in the control group (260 ± 22 U/l), but values were significantly lower by about fourfold (60 ± 30 U/l) in glycine-fed rats. Similarly, free radical production in urine was significantly lower in glycine-treated animals. Importantly, on postischemic day 1, binding of pimonidazole, an in vivo hypoxia marker, was increased in the outer medulla in controls; however, this phenomenon was prevented by glycine. Two weeks later, mild leukocyte infiltration and interstitial fibrosis were still observed in controls, but not in kidneys from glycine-treated rats. In conclusion, these results indicate that administration of glycine indeed reduces mild ischemia-reperfusion injury in the kidney in vivo, in part by decreasing initial damage and preventing chronic hypoxia.


2020 ◽  
Vol 319 (6) ◽  
pp. F1054-F1066
Author(s):  
Hye Jung Kim ◽  
Sun-Hee Kim ◽  
Minjung Kim ◽  
HyungJoo Baik ◽  
Seok Ju Park ◽  
...  

In the present study, we demonstrated the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia-reperfusion injury. AKI due to ischemic injury represents a significant clinical problem. PGE2 is vasodilatory in the kidney, but it is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI renal morphology injury scores and tubular apoptosis and markedly reduced biomarkers of renal injury that included blood urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high-mobility group box 1, and malondialdehyde. Protective effects of SW033291 were mediated by PGE2 signaling, as they could be blocked by pharmacological inhibition of PGE2 synthesis. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 receptors and cAMP, along with other vasodilatory effectors, including AMP, adenosine, and the adenosine A2A receptor. The protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Inhibition of 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Chandu Vemuri ◽  
Junjie Chen ◽  
Rohun U Palekar ◽  
John S Allen ◽  
Xiaoxia Yang ◽  
...  

Objective: Thrombin mediated microvascular thrombosis plays a crucial role in the pathogenesis of acute renal reperfusion injury following transient ischemia. We hypothesize that anti-thrombin nanoparticles will ameliorate acute renal injury by inhibiting microvascular thrombosis. Methods: Adult, male Sprague Dawley rats were randomized into two groups of 5 to receive tail vein injections of saline or nanoparticles loaded with Phe[D]-Pro-Arg-Chloromethylketone (NP-PPACK). Immediately following injection, all animals underwent operative bilateral renal artery occlusion to create 45 minutes of warm ischemia, followed by restoration of renal blood flow. Blood samples were drawn daily and animals were euthanized on day 1 or 7 for histologic analysis of kidney injury (H&E, TUNEL and thrombin staining). Results: Histologic analysis of renal tissue revealed significant apoptosis, necrosis and thrombin accumulation 1 day after ischemia-reperfusion, confirming acute kidney injury. The peak creatinine (mg/dl) on day 1 was significantly lower in NP-PPACK treated animals (0.57 +/- 0.07 (SEM)) than in saline treated controls (1.40 +/- 0.20 (SEM); p-value <0.01). Furthermore, animals treated with NP-PPACK continued to exhibit less renal dysfunction for 7 days after injury (Figure 1). Conclusion: Histologically confirmed intrarenal thrombosis was detected one day after ischemia-reperfusion injury. Targeted inhibition of thrombin with NP-PPACK prevented a decline in renal function following transient occlusion. Future work will focus on defining the underlying mechanisms of this effect.


2001 ◽  
Vol 91 (4) ◽  
pp. 1828-1835 ◽  
Author(s):  
Nicole Stupka ◽  
Peter M. Tiidus

The effects of estrogen and ovariectomy on indexes of muscle damage after 2 h of complete hindlimb ischemia and 2 h of reperfusion were investigated in female Sprague-Dawley rats. The rats were assigned to one of three experimental groups: ovariectomized with a 17β-estradiol pellet implant (OE), ovariectomized with a placebo pellet implant (OP), or control with intact ovaries (R). It was hypothesized that following ischemia-reperfusion (I/R), muscle damage indexes [serum creatine kinase (CK) activity, calpain-like activity, inflammatory cell infiltration, and markers of lipid peroxidation (thiobarbituric-reactive substances)] would be lower in the OE and R rats compared with the OP rats due to the protective effects of estrogen. Serum CK activity following I/R was greater ( P < 0.01) in the R rats vs. OP rats and similar in the OP and OE rats. Calpain-like activity was greatest in the R rats ( P < 0.01) and similar in the OP and OE rats. Neutrophil infiltration was assessed using the myeloperoxidase (MPO) assay and immunohistochemical staining for CD43-positive (CD43+) cells. MPO activity was lower ( P < 0.05) in the OE rats compared with any other group and similar in the OP and R rats. The number of CD43+ cells was greater ( P < 0.01) in the OP rats compared with the OE and R rats and similar in the OE and R rats. The OE rats had lower ( P < 0.05) thiobarbituric-reactive substance content following I/R compared with the R and OP rats. Indexes of muscle damage were consistently attenuated in the OE rats but not in the R rats. A 10-fold difference in serum estrogen content may mediate this. Surprisingly, serum CK activity and muscle calpain-like activity were lower ( P< 0.05) in the OP rats compared with the R rats. Increases in serum insulin-like growth factor-1 content ( P < 0.05) due to ovariectomy were hypothesized to account for this finding. Thus both ovariectomy and estrogen supplementation have differential effects on indexes of I/R muscle damage.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guo Zu ◽  
Jing Guo ◽  
Ningwei Che ◽  
Tingting Zhou ◽  
Xiangwen Zhang

Abstract Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.


2016 ◽  
Vol 94 (12) ◽  
pp. 1267-1275 ◽  
Author(s):  
Yidan Wei ◽  
Meijuan Xu ◽  
Yi Ren ◽  
Guo Lu ◽  
Yangmei Xu ◽  
...  

Arachidonic acid (AA) is a precursor that is metabolized by several enzymes to many biological eicosanoids. Accumulating data indicate that the ω-hydroxylation metabolite of AA, 20-hydroxyeicosatetraenoic acid (20-HETE), is considered to be involved in the myocardial ischemia–reperfusion injury (MIRI). The inhibitors of AA ω-hydroxylase, however, are demonstrated to exhibit protective effects on MIRI. Dihydrotanshinone I (DI), a bioactive constituent of danshen, is proven to be a potent inhibitor of AA ω-hydroxylase by our preliminary study in vitro. The purpose of the present study was to investigate the cardioprotection of DI against MIRI and its effects on the concentrations of 20-HETE in vivo. Rats subjected to 30 min of ischemia followed by 24 h of reperfusion were assigned to intravenously receive vehicle (sham and ischemia–reperfusion), low (1 mg/kg), middle (2 mg/kg), or high (4 mg/kg) doses of DI before reperfusion. The results demonstrated that DI treatment could improve cardiac function, reduce infarct size, ameliorate the variations in myocardial zymogram and histopathological disorders, decrease 20-HETE generation, and regulate apoptosis-related protein in myocardial ischemia–reperfusion rats. These findings suggested DI could exert considerable cardioprotective action on MIRI by the attenuation of 20-HETE generation, subsequent myocardial injury, and apoptosis through inhibition on AA ω-hydroxylase.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Min Wang ◽  
Rui-ying Wang ◽  
Jia-hui Zhou ◽  
Xue-heng Xie ◽  
Gui-bo Sun ◽  
...  

Calenduloside E (CE) is a natural triterpenoid saponin isolated from Aralia elata (Miq.) Seem., a well-known traditional Chinese medicine. Our previous studies have shown that CE exerts cardiovascular protective effects both in vivo and in vitro. However, its role in myocardial ischemia/reperfusion injury (MIRI) and the mechanism involved are currently unknown. Mitochondrial dynamics play a key role in MIRI. This study investigated the effects of CE on mitochondrial dynamics and the signaling pathways involved in myocardial ischemia/reperfusion (MI/R). The MI/R rat model and the hypoxia/reoxygenation (H/R) cardiomyocyte model were established in this study. CE exerted significant cardioprotective effects in vivo and in vitro by improving cardiac function, decreasing myocardial infarct size, increasing cardiomyocyte viability, and inhibiting cardiomyocyte apoptosis associated with MI/R. Mechanistically, CE restored mitochondrial homeostasis against MI/R injury through improved mitochondrial ultrastructure, enhanced ATP content and mitochondrial membrane potential, and reduced mitochondrial permeability transition pore (MPTP) opening, while promoting mitochondrial fusion and preventing mitochondrial fission. However, genetic silencing of OPA1 by siRNA abolished the beneficial effects of CE on cardiomyocyte survival and mitochondrial dynamics. Moreover, we demonstrated that CE activated AMP-activated protein kinase (AMPK) and treatment with the AMPK inhibitor, compound C, abolished the protective effects of CE on OPA1 expression and mitochondrial function. Overall, this study demonstrates that CE is effective in mitigating MIRI by modulating AMPK activation-mediated OPA1-related mitochondrial fusion.


Sign in / Sign up

Export Citation Format

Share Document