Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo

2002 ◽  
Vol 282 (3) ◽  
pp. F417-F423 ◽  
Author(s):  
Ming Yin ◽  
Zhi Zhong ◽  
Henry D. Connor ◽  
Hartwig Bunzendahl ◽  
William F. Finn ◽  
...  

Although glycine prevents renal tubular cell injury in vitro, its effect in vivo is not clear. The purpose of this study was to investigate whether a bolus injection of glycine given before reperfusion plus continuous dietary supplementation afterward would reduce renal injury caused by ischemia-reperfusion. Female Sprague-Dawley rats received a semisynthetic powdered diet containing 5% glycine and 15% casein (glycine group) or 20% casein (control group). Two days later, renal ischemia was produced by cross-clamping the left renal vessels for 15 min, followed by reperfusion. The right kidney was removed before reperfusion. The postischemic glomerular filtration rate (GFR) showed that renal function was less impaired and recovered more quickly in rats receiving glycine. For example, at day 7, GFR in controls (0.31 ± 0.03 ml · min−1 · 100 g−1) was about one-half that of glycine-treated rats (0.61 ± 0.06 ml · min−1 · 100 g−1, P < 0.05). Furthermore, tubular injury and cast formation observed in controls was minimized by glycine (pathology score, 3.2 ± 0.4 vs. 1.0 ± 0.4, P < 0.05). Urinary lactate dehydrogenase (LDH) concentration was elevated by ischemia-reperfusion in the control group (260 ± 22 U/l), but values were significantly lower by about fourfold (60 ± 30 U/l) in glycine-fed rats. Similarly, free radical production in urine was significantly lower in glycine-treated animals. Importantly, on postischemic day 1, binding of pimonidazole, an in vivo hypoxia marker, was increased in the outer medulla in controls; however, this phenomenon was prevented by glycine. Two weeks later, mild leukocyte infiltration and interstitial fibrosis were still observed in controls, but not in kidneys from glycine-treated rats. In conclusion, these results indicate that administration of glycine indeed reduces mild ischemia-reperfusion injury in the kidney in vivo, in part by decreasing initial damage and preventing chronic hypoxia.

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Dan Shan ◽  
Yan Zhang ◽  
Rui-ping Xiao

Introduction: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion (I/R) injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (or TRIM72), not only plays an essential role in IPC-mediated cardioprotection, but also as a myokine/cardiokine, can be secreted from the heart and skeletal muscle in response to metabolic stress in addition to its intracellular actions. Hypothesis: We hypothesized that IPC-mediated cardioprotection is causally related to MG53 secretion and figured out the underlying mechanism. Methods and Results: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo , isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. IPC profoundly increased perfusate MG53 levels in mouse hearts by 5.50 ± 0.32 and 4.26 ± 0.40 folds from baseline over 0-60 and 60-120 min of reperfusion, respectively. Mechanistically, IPC-induced MG53 secretion is dependent on H 2 O 2 -evoked, Src-mediated phosphorylation of PKC-δ-Y311. Functionally, systemic delivery of recombinant human MG53 proteins (rhMG53) to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice, but also protected rodent hearts from I/R injury even in the absence of IPC. Treatment of rhMG53 overtly decreased the infarct size (IF/AAR) induced by I/R compared to the BSA-treated control group (11.9 ± 1.8% vs 27.3 ± 2.0%, P <0.01), and reduced the mortality from 44.7% to 5.3% in rats. Moreover, H 2 O 2 augmented MG53 secretion, and MG53 knockdown exacerbated H 2 O 2 -induced cell injury in human embryonic stem cell-derived cardiomyocytes. Conclusions: In conclusion, IPC and oxidative stress can trigger MG53 secretion from the heart via an H 2 O 2 -PKC-δ-dependent mechanism, and secreted MG53 acts as an essential factor conveying IPC-induced cardioprotection against ischemia/reperfusion injury. Recombinant MG53 proteins can be developed into a novel treatment for various diseases of human heart in which the endogenous MG53 is low.


2006 ◽  
Vol 290 (4) ◽  
pp. F779-F786 ◽  
Author(s):  
Mahesh Basireddy ◽  
T. Scott Isbell ◽  
Xinjun Teng ◽  
Rakesh P. Patel ◽  
Anupam Agarwal

Reactive oxygen and nitrogen species play a key role in the pathophysiology of renal ischemia-reperfusion (I/R) injury. Recent studies have shown that nitrite (NO2−) serves as an endogenous source of nitric oxide (NO), particularly in the presence of hypoxia and acidosis. Nanomolar concentrations of NO2− reduce injury following I/R in the liver and heart in vivo. The purpose of this study was to evaluate the role of NO2− in renal I/R injury. Male Sprague-Dawley rats underwent a unilateral nephrectomy followed by 45 min of ischemia of the contralateral kidney or sham surgery under isoflurane anesthesia. Animals received normal saline, sodium NO2−, or sodium nitrate (NO3−; 1.2 nmol/g body wt ip) at 22.5 min after induction of ischemia or 15 min before ischemia. A separate set of animals received saline, NO2−, or NO3− (0.12, 1.2, or 12 nmol/g body wt iv) 45 min before ischemia. Serum creatinine and blood urea nitrogen were increased following I/R injury but were not significantly different among treatment groups at 24 and 48 h after acute renal injury. Interestingly, NO3− administration appeared to worsen renal injury. Histological scoring for loss of brush border, tubular necrosis, and red blood cell extravasation showed no significant differences among the treatment groups. The results indicate that, contrary to the protective effects of NO2− in I/R injury of the liver and heart, NO2− does not provide protection in renal I/R injury and suggest a unique metabolism of NO2− in the kidney.


2019 ◽  
Vol 20 (24) ◽  
pp. 6168
Author(s):  
Min-Hsun Kuo ◽  
Hung-Fu Lee ◽  
Yi-Fang Tu ◽  
Li-Hsuan Lin ◽  
Ya-Yun Cheng ◽  
...  

Ischemic stroke is a leading cause of human death in present times. Two phases of pathological impact occur during an ischemic stroke, namely, ischemia and reperfusion. Both periods include individual characteristic effects on cell injury and apoptosis. Moreover, these conditions can cause severe cell defects and harm the blood-brain barrier (BBB). Also, the BBB components are the major targets in ischemia-reperfusion injury. The BBB owes its enhanced protective roles to capillary endothelial cells, which maintain BBB permeability. One of the nerve growth factor (NGF) receptors initiating cell signaling, once activated, is the p75 neurotrophin receptor (p75NTR). This receptor is involved in both the survival and apoptosis of neurons. Although many studies have attempted to explain the role of p75NTR in neurons, the mechanisms in endothelial cells remain unclear. Endothelial cells are the first cells to encounter p75NTR stimuli. In this study, we found the upregulated p75NTR expression and reductive expression of tight junction proteins after in vivo and in vitro ischemia-reperfusion injury. Moreover, astaxanthin (AXT), an antioxidant drug, was utilized and was found to reduce p75NTR expression and the number of apoptotic cells. This study verified that p75NTR plays a prominent role in endothelial cell death and provides a novel downstream target for AXT.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gecai Chen ◽  
Aihuan Yue ◽  
Meixiang Wang ◽  
Zhongbao Ruan ◽  
Li Zhu

The purpose of the study was to explore the mechanism by which myocardial ischemia-reperfusion (I/R) injury-induced exosomes modulate mesenchymal stem cells (MSCs) to regulate myocardial injury. In this study, we established an I/R injury model in vivo and a hypoxia-reoxygenation (H/R) model in vitro. Then, exosomes isolated from H/R-exposed H9c2 cells were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot analysis. CCK-8 assays and flow cytometry were performed to assess cell injury. ELISA was applied to determine the level of insulin-like growth factor 1 (IGF-1). Echocardiography was used to assess cardiac function in vivo. HE staining and TUNEL assays were conducted to analyze myocardial injury in vivo. In the present study, H/R-exposed H9c2 cells induced IGF-1 secretion from MSCs to inhibit cell myocardial injury. Moreover, exosomes derived from H/R-exposed H9c2 cells were introduced to MSCs to increase IGF-1 levels. The lncRNA KLF3-AS1 was dramatically upregulated in exosomes derived from H/R-treated H9c2 cells. Functional experiments showed that the exosomal lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and increased H9c2 cell viability. In addition, miR-23c contains potential binding sites for both KLF3-AS1 and STAT5B, and miR-23c directly bound to the 3'-UTRs of KLF3-AS1 and STAT5B. Furthermore, the lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and rescued myocardial cell injury in vivo and in vitro by upregulating STAT5B expression. The lncRNA KLF3-AS1 may serve as a new direction for the treatment of myocardial I/R injury.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
Vol 22 (5) ◽  
pp. 2727
Author(s):  
Gertrude J. Nieuwenhuijs-Moeke ◽  
Dirk J. Bosch ◽  
Henri G.D. Leuvenink

Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document