Morphine induces mesangial cell proliferation and glomerulopathy via κ-opioid receptors

2008 ◽  
Vol 294 (6) ◽  
pp. F1388-F1397 ◽  
Author(s):  
Marc L. Weber ◽  
Mariya Farooqui ◽  
Julia Nguyen ◽  
Michael Ansonoff ◽  
John E. Pintar ◽  
...  

Morphine sulfate (MS) stimulates mesangial cell (MC) proliferation, a process central to development of glomerular disease. The purpose of this study was to examine whether specific opioid receptors (OR) and signal transducer and activators of transcription 3 (STAT3) signaling are associated with MS-induced MC proliferation. C57Bl/6J and OR-specific knockout (KO) mice were treated for up to 6 wk with PBS, MS (0.7–2.14 mg/kg), naloxone (equimolar to MS), or MS+naloxone ( n = 6 per group). Glomerular volume and expression of PCNA, Thy1, and ED1/CD68 were analyzed in kidney sections. Cell proliferation and STAT3 phosphorylation were analyzed by bromodeoxyuridine (BrdU) ELISA and Western blot, respectively, in MCs in vitro. MS treatment led to enlarged kidneys and glomerulopathy and naloxone reversed these effects. MS treatment increased glomerular volume in both μ-OR (MOR) KO and δ-OR (DOR) KO mice, but not in κ-OR (KOR) KO mice. To ascertain that MS-induced glomerulopathy in vivo was due to MC proliferation, we further examined the OR-specific effects of MS in MCs in vitro. MS-induced MC proliferation in vitro was inhibited by KOR-specific nor-BNI, but not by DOR or MOR-specific antagonists naltrindol or CTOP, respectively. KOR-specific agonist U50488H stimulated proliferation of MCs, but DOR-specific agonist DPDPE and MOR-specific agonist DAMGO did not. MS failed to stimulate proliferation of MCs from KOR KO mice. MS and KOR agonists induced STAT3 phosphorylation, and STAT3 inhibitor blocked KOR agonist-induced MC proliferation. We show that MS stimulates glomerulopathy and MC proliferation via KOR and STAT3 signaling.

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A16.1-A16
Author(s):  
O Sapega ◽  
R Mikyskova ◽  
K Musilek ◽  
J Bieblova ◽  
Z Hodny ◽  
...  

BackgroundCellular senescence is the process of cell proliferation arrest. Premature cellular senescence can be induced by chemotherapy, irradiation and, under certain circumstances, by cytokines. Senescent cells produce a number of secreted proteins and growth factors that may either stimulate or inhibit cell proliferation. One of the major cytokines that play role in regulation of cellular senescence is IL-6. IL-6/STAT3 signaling pathway represent decisive regulatory factors in cellular senescence. The objective of this study was to compare the effects of the STAT3 inhibitors on senescent and proliferative tumour cells. Further, the therapeutic potential of the STAT3 inhibitors was evaluated using murine tumour models.Materials and MethodsIn vitro, as well as in vivo experiments were performed using TC-1 (model for HPV16-associated tumours) TRAMP-C2 (prostate cancer) cell lines. C57Bl/6NCrl mice, 7–8 weeks old, were obtained from Velaz (Prague, Czech Republic). Experimental protocols were approved by the Institutional Animal Care Committee of the Institute of Molecular Genetics (Prague, Czech Republic). STAT3 inhibitors, namely STATTIC, BP-102 (synthesised at the University of Hradec Kralove) and their derivatives were tested for their effects on tumour cells, such as cytotoxicity, ability to inhibit STAT3 phosphorylation, cell proliferation and tumour growth in syngeneic mice.ResultsWe have previously demonstrated that docetaxel-induced senescence in the TC-1 and TRAMP-C2 murine tumour cell lines, which was proved by in vitro (detection of increased p21 expression, positive beta-galactosidase staining, and the typical SASP capable to induce ‘bystander’ senescence), and in vivo experiments, using C57BL/6 mice [1]. Both TC-1 and TRAMP-C2 cells displayed elevated IL-6 secretion and activated STAT3 signaling pathway. Therefore, we tested efficacy of the STAT3 inhibitors on these cell lines. Cytotoxic and STAT3 phosphorylation inhibitory effects of the inhibitors were observed in both proliferating and senescent cells. Antitumor effects of selected inhibitors were evaluated.ConclusionsCollectively, STAT3 is an attractive target for therapeutic approaches in cancer treatment and we can assume that inhibition of the STAT3 pathway can be used for elimination of the pernicious effects of the senescent cells.ReferenceSimova J, Sapega O, Imrichova T, Stepanek I, Kyjacova L, Mikyskova R, Indrova M, Bieblova J, Bubenik J, Bartek J, et al: Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines. Oncotarget7: 54952–54964, 2016. This work was supported by the research grant No. NV18-05-00562 provided by the Grant Agency of the Ministry of Health of the Czech Republic.Disclosure InformationO. Sapega: None. R. Mikyskova: None. K. Musilek: None. J. Bieblova: None. Z. Hodny: None. M. Reinis: None.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiang Chen ◽  
Li Pan ◽  
Jia Wei ◽  
Ruijie Zhang ◽  
Xiaozhi Yang ◽  
...  

AbstractSignal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor and an oncogene product, which plays a pivotal role in tumor progression. Therefore, targeting persistent STAT3 signaling directly is an attractive anticancer strategy. The aim of this study is to test the efficacy of a novel STAT3 small molecule inhibitor, LLL12B, in suppressing medulloblastoma cells in vitro and tumor growth in vivo. LLL12B selectively inhibited the induction of STAT3 phosphorylation by interleukin-6 but not induction of STAT1 phosphorylation by INF-γ. LLL12B also induced apoptosis in human medulloblastoma cells. In addition, LLL12B exhibited good oral bioavailability in vivo and potent suppressive activity in tumor growth of medulloblastoma cells in vivo. Besides, combining LLL12B with cisplatin showed greater inhibition of cell viability and tumorsphere formation as well as induction of apoptosis comparing to single agent treatment in medulloblastoma cells. Furthermore, LLL12B and cisplatin combination exhibited greater suppression of medulloblastoma tumor growth than monotherapy in vivo. The present study supported that LLL12B is a novel therapeutic agent for medulloblastoma and the combination of LLL12B with a chemotherapeutic agent cisplatin may be an effective approach for medulloblastoma therapy.


1997 ◽  
Vol 51 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Masashi Haraguchi ◽  
Mikio Okamura ◽  
Masayo Konishi ◽  
Yoshio Konishi ◽  
Nobuo Negoro ◽  
...  

2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


1998 ◽  
Vol 101 (11) ◽  
pp. 2589-2597 ◽  
Author(s):  
Y Maeshima ◽  
N Kashihara ◽  
T Yasuda ◽  
H Sugiyama ◽  
T Sekikawa ◽  
...  

Author(s):  
Ning Jiang ◽  
Yihao Liao ◽  
Miaomiao Wang ◽  
Youzhi Wang ◽  
Keke Wang ◽  
...  

Abstract Background The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear. Methods Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo. Results In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts. Conclusion This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2391
Author(s):  
Alexander T. H. Wu ◽  
Hsu-Shan Huang ◽  
Ya-Ting Wen ◽  
Bashir Lawal ◽  
Ntlotlang Mokgautsi ◽  
...  

Glioblastoma (GBM) is one of the most aggressive brain malignancies with high incidences of developing treatment resistance, resulting in poor prognoses. Glioma stem cell (GSC)-derived exosomes are important players that contribute to GBM tumorigenesis and aggressive properties. Herein, we investigated the inhibitory roles of GBM-N019, a novel small molecule on the transfer of aggressive and invasive properties through the delivery of oncogene-loaded exosomes from GSCs to naïve and non-GSCs. Our results indicated that GBM-N019 significantly downregulated the expressions of the mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 6 (CDK6) signaling networks with concomitant inhibitory activities against viability, clonogenicity, and migratory abilities of U251 and U87MG cells. Treatments with GBM-N019 halted the exosomal transfer of protein kinase B (Akt), mTOR, p-mTOR, and Ras-related protein RAB27A to the naïve U251 and U87MG cells, and rescued the cells from invasive and stemness properties that were associated with activation of these oncogenes. GBM-N019 also synergized with and enhanced the anti-GBM activities of palbociclib in vitro and in vivo. In conclusion, our results suggested that GBM-N019 possesses good translational relevance as a potential anti-glioblastoma drug candidate worthy of consideration for clinical trials against recurrent glioblastomas.


2020 ◽  
Author(s):  
Ioannis Pozios ◽  
Nina N. Seel ◽  
Nina A. Hering ◽  
Lisa Hartmann ◽  
Verena Liu ◽  
...  

Abstract Purpose Currently, the exact role of estrogen receptor (ER) signaling in pancreatic cancer is unknown. Recently, we showed that expression of phosphorylated ERβ correlates with a poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Here, we hypothesized that raloxifene, a FDA-approved selective ER modulator (SERM), may suppress PDAC tumor growth by interfering with ERβ signaling. To test this hypothesis, we studied the impact of raloxifene on interleukin-6/glycoprotein-130/signal transducer and activator of transcription-3 (IL-6/gp130/STAT3) signaling. Methods Human PDAC cell lines were exposed to raloxifene after which growth inhibition was assessed using a BrdU assay. ER knockdown was performed using siRNAs specific for ERα and ERβ. The effects of raloxifene on IL-6 expression and STAT3 phosphorylation in PDAC cells were assessed by ELISA and Western blotting, respectively. In addition, raloxifene was administered to an orthotopic PDAC tumor xenograft mouse model, after which tumor growth was monitored and immunohistochemistry was performed. Results Raloxifene inhibited the in vitro growth of PDAC cells, and this effect was reversed by siRNA-mediated knockdown of ERβ, but not of ERα, indicating ER isotype-specific signaling. We also found that treatment with raloxifene inhibited the release of IL-6 and suppressed the phosphorylation of STAT3Y705 in PDAC cells. In vivo, we found that orthotopic PDAC tumor growth, lymph node and liver metastases as well as Ki-67 expression were reduced in mice treated with raloxifene. Conclusions Inhibition of ERβ and the IL-6/gp130/STAT3 signaling pathway by raloxifene leads to potent reduction of PDAC growth in vitro and in vivo. Our results suggest that ERβ signaling and IL-6/gp130 interaction may serve as promising drug targets for pancreatic cancer and that raloxifene may serve as an attractive therapeutic option for PDAC patients expressing the ERβ isotype.


Sign in / Sign up

Export Citation Format

Share Document