scholarly journals Neuraminidase activity mediates IL-6 production by activated lupus-prone mesangial cells

2018 ◽  
Vol 314 (4) ◽  
pp. F630-F642 ◽  
Author(s):  
Kamala Sundararaj ◽  
Jessalyn I. Rodgers ◽  
Subathra Marimuthu ◽  
Leah J. Siskind ◽  
Evelyn Bruner ◽  
...  

The development of nephritis is a leading cause of morbidity and mortality in lupus patients. Although the general pathophysiological progression of lupus nephritis is known, the molecular mediators and mechanisms are incompletely understood. Previously, we demonstrated that the glycosphingolipid (GSL) catabolic pathway is elevated in the kidneys of MRL/lpr lupus mice and human lupus patients with nephritis. Specifically, the activity of neuraminidase (NEU) and expression of Neu1, an enzyme in the GSL catabolic pathway is significantly increased. To better understand the role and mechanisms by which this pathway contributes to the progression of LN, we analyzed the expression and effects of NEU activity on the function of MRL/lpr lupus-prone mesangial cells (MCs). We demonstrate that NEU1 and NEU3 promote IL-6 production in MES13 MCs. Neu1 expression, NEU activity, and IL-6 production are significantly increased in stimulated primary MRL/lpr lupus-prone MCs, and blocking NEU activity inhibits IL-6 production. NEU1 and NEU3 expression overlaps IgG deposits in MCs in vitro and in renal sections from nephritic MRL/lpr mice. Together, our results suggest that NEU activity mediates IL-6 production in lupus-prone MCs possibly through an IgG-receptor complex signaling pathway.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Zhenjian Xu ◽  
Junzhe Chen ◽  
Anping Xu

Abstract Background and Aims Our previous study found a new regulatory T cell subpopulation, CD4+CD126lowFoxp3+ regulatory T cells (CD4+CD126lowFoxp3+ Treg). This cell can maintain a stable immune regulatory function in the inflammatory state. Through in vivo and in vitro experiments, we have confirmed that CD4+CD126lowFoxp3+ Treg has an immunotherapeutic effect on T cell-mediated mouse models of autoimmune diseases such as colitis and collagen-induced arthritis (CIA). Further experimental studies showed that CD4+CD126lowFoxp3+ Treg could reduce the kidney injury caused by autoantibodies and prolong the survival time of lupus mice. However, the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in lupus nephritis is not clear. The purpose of this study was to explore the mechanism of CD4+CD126lowFoxp3+ Treg immunotherapy in mice with lupus nephritis. Method In vitro experiments CD4+CD126lowFoxp3+ Treg or CD4+CD126lowFoxp3+ Treg pretreated with PD-1 inhibitor were co-cultured with T or B lymphocytes of lupus mice under different in vitro culture condition. The expression levels of Akt and mTOR of Treg in each group were measured under immunoinflammatory conditions. To observe the effects and differences of Treg groups on the activation, proliferation and differentiation of T or B cells and other immunomodulatory effects. In vivo experiments CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) and CD4+CD126lowFoxp3+ Treg (2 × 106/mouse) pretreated with PD-1 inhibitor and PBS were injected into NZM2328 lupus mice, respectively. After cell injection, urine protein was measured weekly. Autoantibody expression in lupus mice was measured every two weeks. The effects of Treg on the proliferation and differentiation of T/B cells in lupus mice were observed. The therapeutic effects of Treg on lupus mice were observed. Results Compared with CD4+CD126lowFoxp3+ Treg, the expression of Akt and mTOR increases in PD-1 inhibitors pretreatment cells. The activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vitro, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-mTOR signaling pathway through PD-1 in in vitro. Compared with CD4+CD126lowFoxp3+ Treg, the activation, proliferation and differentiation functions of T or B lymphocytes of lupus mice were significantly weakened by immunosuppression of PD-1 inhibitors pretreated Treg in vivo. And its therapeutic effect on lupus mice was ineffective, indicating that CD4+CD126lowFoxp3+ Treg may inhibit Akt-MTOR signaling pathway through PD-1 in vivo. Conclusion CD4+CD126lowFoxp3+ Treg may inhibit the Akt-mTOR signaling pathway by expressing PD-1, and maintain stable immunomodulatory function in the inflammatory state, thus producing immunotherapeutic effect on lupus nephritis mice.


2020 ◽  
Vol 21 (4) ◽  
pp. 1372 ◽  
Author(s):  
Eloi Garcia-Vives ◽  
Cristina Solé ◽  
Teresa Moliné ◽  
Marta Vidal ◽  
Irene Agraz ◽  
...  

Data on exosomal-derived urinary miRNAs have identified several miRNAs associated with disease activity and fibrosis formation, but studies on prognosis are lacking. We conducted a qPCR array screening on urinary exosomes from 14 patients with biopsy-proven proliferative lupus glomerulonephritis with a renal outcome of clinical response (n = 7) and non-response (n = 7) following therapy. Validation studies were performed by qRT-PCR in a new lupus nephritis (LN) cohort (responders = 22 and non-responders = 21). Responder patients expressed significantly increased levels of miR-31, miR-107, and miR-135b-5p in urine and renal tissue compared to non-responders. MiR-135b exhibited the best predictive value to discriminate responder patients (area under the curve = 0.783). In vitro studies showed exosome-derived miR-31, miR-107, and miR-135b-5p expression to be mainly produced by tubular renal cells stimulated with inflammatory cytokines (e.g IL1, TNFα, IFNα and IL6). Uptake of urinary exosomes from responders by mesangial cells was superior compared to that from non-responders (90% vs. 50%, p < 0.0001). HIF1A was identified as a potential common target, and low protein levels were found in non-responder renal biopsies. HIF1A inhibition reduced mesangial proliferation and IL-8, CCL2, CCL3, and CXCL1 mesangial cell production and IL-6/VCAM-1 in endothelial cells. Urinary exosomal miR-135b-5p, miR-107, and miR-31 are promising novel markers for clinical outcomes, regulating LN renal recovery by HIF1A inhibition.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Zhiqin Liu ◽  
Leixi Xue ◽  
Zhichun Liu ◽  
Jun Huang ◽  
Jian Wen ◽  
...  

This study aim was to explore the effects of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis and its potential underlying mechanisms. MRL/lpr mice were used forin vivoexperiments and human proximal tubular cells (HK2 cells) were used forin vitroexperiments. Results showed that MRL/lpr mice treated with vehicle solution or LV-Control shRNA displayed significant proteinuria and severe renal histopathological changes. LV-TWEAK-shRNA treatment reversed these changes and decreased renal expressions of TWEAK, TGF-β1, p-p38 MAPK, p-Smad2, COL-1, andα-SMA proteins.In vitro, hTWEAK treatment upregulated the expressions of TGF-β1, p-p38 MAPK, p-SMAD2,α-SMA, and COL-1 proteins in HK2 cells and downregulated the expressions of E-cadherin protein, which were reversed by cotreatment with anti-TWEAK mAb or SB431542 treatment. These findings suggest that TWEAK may contribute to chronic renal changes and renal fibrosis by activating TGF-β1 signaling pathway, and phosphorylation of Smad2 and p38 MAPK proteins was also involved in this signaling pathway.


2016 ◽  
Vol 310 (6) ◽  
pp. C470-C478 ◽  
Author(s):  
Liu Qingjuan ◽  
Feng Xiaojuan ◽  
Zhang Wei ◽  
Wu Chao ◽  
Kang Pengpeng ◽  
...  

The objective of this study was to investigate the role of miR-148a-3p in lupus nephritis (LN) based on data from previous studies and a microRNA assay. We evaluated the miR-148a-3p expression level in LN renal tissues and blood serum to determine its clinicopathological significance and effect on glomerular cell proliferation. Then, we collected renal glomeruli from LN mice and determined the miR-148a-3p, proliferating cell nuclear antigen (PCNA), and PCNA/Thy1 expression. We performed functional analyses of miR-148a-3p in vitro and in vivo. We also investigated the target gene of miR-148a-3p in LN. The results showed that miR-148a-3p expression levels were significantly higher not only in glomeruli but also in the blood serum during LN and increased in the glomeruli of LN mice and that at the same time there was positive correlation between miR-148a-3p and PCNA expression of glomruli. Overexpression of miR-148a-3p accelerated cell proliferation and PCNA expression, while a miR-148a-3p inhibitor inhibited cell proliferation via the Akt/cyclin D1 pathway. Furthermore, miR-148a-3p overexpression reduced the phosphatase and tensin homology deleted on chromosome ten (PTEN) expression level, while miR-148a-3p silencing increased its expression in high-mobility group box 1 (HMGB1)-induced mouse mesangial cells (MMCs). Luciferase assays demonstrated that miR-148a-3p could directly bind to the PTEN 3′-UTR. PTEN overexpression inhibited MMC proliferation considerably, resembling the results observed during miR-148a-3p inhibition. Reducing miR-148a-3p expression upregulated PTEN in the glomeruli and improved renal function in LN mice. Thus miR-148a-3p may promote proliferation and contribute to LN progression by targeting PTEN.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Rachael D. Wright ◽  
Paraskevi Dimou ◽  
Sarah J. Northey ◽  
Michael W. Beresford

Abstract Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus patients. Mesangial cells (MCs) comprise a third of the glomerular cells and are key contributors to fibrotic changes within the kidney. This project aims to identify the roles of MCs in an in vitro model of LN. Methods Conditionally immortalised MCs were treated with pro-inflammatory cytokines or with patient sera in an in vitro model of LN and assessed for their roles in inflammation and fibrosis. Results MCs were shown to produce pro-inflammatory cytokines in response to a model of the inflammatory environment in LN. Further the cells expressed increased levels of mRNA for extracellular matrix (ECM) proteins (COL1A1, COL1A2, COL4A1 and LAMB1), matrix metalloproteinase enzymes (MMP9) and tissue inhibitors of matrix metalloproteinases (TIMP1). Treatment of MCs with serum from patients with active LN was able to induce a similar, albeit milder phenotype. Treatment of MCs with cytokines or patient sera was able to induce secretion of TGF-β1, a known inducer of fibrotic changes. Inhibition of TGF-β1 actions through SB-431542 (an activin A receptor type II-like kinase (ALK5) inhibitor) was able to reduce these responses suggesting that the release of TGF-β1 plays a role in these changes. Conclusions MCs contribute to the inflammatory environment in LN by producing cytokines involved in leukocyte recruitment, activation and maturation. Further the cells remodel the ECM via protein deposition and enzymatic degradation. This occurs through the actions of TGF-β1 on its receptor, ALK5. This may represent a potential therapeutic target for treatment of LN-associated fibrosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tian Yu ◽  
Feng Xiaojuan ◽  
Liu Jinxi ◽  
Miao Xinyan ◽  
Xu Jie ◽  
...  

Previously, our study showed that HMGB1 was significantly elevated in the blood and located in the glomerular endothelium in LN patients. But whether extracellular HMGB1 is involved in the injury of glomerular endothelial cells (GECs) in LN still needs further investigation. Firstly, we detected the levels of SDC-1, VCAM-1, and proteinuria in LN patients and MRL/lpr mice and analyzed their correlations. Then, HMGB1 and TLR4/MyD88 were inhibited to observe the shedding of glycocalyx and injury of GECs in vivo and in vitro. Our results showed that HRGEC injury and SDC-1 shedding played an important role in the increase of permeability and proteinuria formation in LN. Additionally, inhibition of extracellular HMGB1 and/or downstream TLR4/MyD88/NF-κB/p65 signaling pathway also alleviated GEC monolayer permeability, reduced the shedding of the glomerular endothelial glycocalyx, improved the intercellular tight junction and cytoskeletal arrangement, and downregulated the NO level and VCAM-1 expression. These results suggested that extracellular HMGB1 might involve in GEC injury by activating the TLR4/MyD88 signaling pathway in LN, which provided novel insights and potential therapeutic target for the treatment of lupus nephritis.


2020 ◽  
Author(s):  
yinghua zhao ◽  
Bo Fu ◽  
Pu Chen ◽  
Qinggang Li ◽  
Qing Ouyang ◽  
...  

Abstract BACKGROUNDMesangial proliferative glomerulonephritis is characterized by the proliferation of mesangial cells (MCs). Endothelial cells (ECs) are affected by signals from MCs, resulting in capillary proliferation, but the specific signaling pathway associated with this activity remains unclear.RESULTSIn this study, the expression of PCNA, RECA-1 and CD34 in the glomeruli increased on the 7th day after anti-Thy-1 nephritis establishment, indicating the occurrence of ECs proliferation. After coculturing MCs and ECs in vitro, we observed that activated MCs could promote ECs proliferation, migration and α-SMA expression. Moreover, activated ECs had the same effects on MCs. RT-qPCR showed that activated MCs could increasingly secrete VEGFA, and Angpt2 expression in VEGFA-activated ECs was enhanced. Considering that Angpt2-mediated inhibition of ECs surface receptor Tie2 phosphorylation causes ECs proliferation, we hypothesized that VEGFA/VEGFR2 and Angpt2/Tie2 signaling is involved in the interaction between MCs and ECs. Our results showed that blocking VEGFA or adding the Angpt2 antagonist Angpt1 to the coculture system decreased the number of EdU-positive cells,Angpt2,p-VEGFR2 and p-MAPK expression, but increased p-Tie2 in ECs. To determine whether Angpt1 could effectively alleviate the pathological changes of anti-Thy-1 nephritis, we performed Vasculotide (Angpt1 mimic peptide) treatment assays in vivo. The results confirmed that the addition of Vasculotide could effectively reduce PCNA, RECA-1 and α-SMA expression and promote p-Tie2.CONCLUSIONIn summary, the study showed that the VEGFA/VEGFR2 and Angpt2/Tie2 signaling pathway mediate interactions between MCs and ECs, providing an important theoretical basis for the treatment of mesangial proliferative glomerulonephritis.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Huixia Wang ◽  
Mei Lu ◽  
Siyue Zhai ◽  
Kunyi Wu ◽  
Lingling Peng ◽  
...  

Abstract Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus. Anti-double-stranded (ds) DNA immunoglobulin G (IgG) plays a pivotal role in the pathogenesis of LN. Currently, there are various therapies for patients with LN; however, most of them are associated with considerable side effects. We confirmed previously that ALW (ALWPPNLHAWVP), a 12-amino acid peptide, inhibited the binding of polyclonal anti-dsDNA antibodies to mesangial cells and isolated glomeruli in vitro. In this study, we further investigate whether the administration of ALW peptide decreases renal IgG deposition and relevant damage in MRL/lpr lupus-prone mice. Methods Forty female MRL/lpr mice were randomly divided into four groups. The mice were intravenously injected with D-form ALW peptide (ALW group), scrambled peptide (PLP group), and normal saline (NaCl group) or were not treated (blank group). The IgG deposition, the histopathologic changes, and the expressions of profibrotic factors were analyzed in the kidney of MRL/lpr mice. Results Compared with the other groups, glomerular deposition of IgG, IgG2a, IgG2b, and IgG3 was decreased in the ALW group. Moreover, ALW administration attenuated renal histopathologic changes in MRL/lpr mice, including mesangial proliferation and infiltration of inflammatory cells. Furthermore, the expressions of profibrotic cytokines, such as transforming growth factor-beta1 (TGF-β1) and platelet-derived growth factor B (PDGF-B), decreased in the serum and kidney tissue of ALW-treated mice. Conclusions Our study demonstrated that ALW peptide ameliorates the murine model of LN, possibly through inhibiting renal IgG deposition and relevant tissue inflammation and fibrosis.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 483 ◽  
Author(s):  
Zhonghua Dong ◽  
Yueyue Sun ◽  
Guangwei Wei ◽  
Siying Li ◽  
Zhongxi Zhao

(1) Background: Diabetic nephropathy, a microvascular complication of diabetes, is one of the principal causes of end-stage renal disease worldwide. The aim of this study was to explore the therapeutic effects of ergosterol on diabetic nephropathy. (2) Methods: Streptozotocin (STZ)-induced C57BL/6 diabetic mice were treated with ergosterol (10, 20, 40 mg/kg/day) for 8 weeks by oral gavage. The in vitro study employed rat mesangial cells exposed to 30 mM glucose for 48 h in the presence of 10 or 20 μM ergosterol. (3) Results: Ergosterol treatment improved body weights, ameliorated the majority of biochemical and renal functional parameters and histopathological changes, and reduced extracellular matrix (ECM) deposition in diabetic mice. In vitro, ergosterol suppressed proliferation, reduced the levels of ECM proteins, and increased the expression of matrix metalloproteinase-2 and -9 in high glucose-induced mesangial cells; Furthermore, ergosterol markedly improved transforming growth factor-β1 (TGF-β1) expression, enhanced phosphorylation levels of drosophila mothers against decapentaplegic 2 (Smad2), and regulated the downstream factors in vivo and in vitro. (4) Conclusions: Ergosterol alleviated mesangial cell proliferation and the subsequent ECM deposition by regulating the TGF-β1/Smad2 signaling pathway.


2019 ◽  
Vol 20 (18) ◽  
pp. 4601 ◽  
Author(s):  
Torres-Salido ◽  
Sanchis ◽  
Solé ◽  
Moliné ◽  
Vidal ◽  
...  

At present, Lupus Nephritis (LN) is still awaiting a biomarker to better monitor disease activity, guide clinical treatment, and predict a patient’s long-term outcome. In the last decade, novel biomarkers have been identified to monitor the disease, but none have been incorporated into clinical practice. The transmembrane receptor neuropilin-1 (NRP-1) is highly expressed by mesangial cells and its genetic deletion results in proteinuric disease and glomerulosclerosis. NRP-1 is increased in kidney biopsies of LN. In this work we were interested in determining whether urinary NRP-1 levels could be a biomarker of clinical response in LN. Our results show that patients with active LN have increased levels of urinary NRP-1. When patients were divided according to clinical response, responders displayed higher urinary and tissue NRP-1 levels at the time of renal biopsy. Areas under the receiver operating characteristic curve, comparing baseline creatinine, proteinuria, urinary NRP-1, and VEGFA protein levels, showed NRP-1 to be an independent predictor for clinical response. In addition, in vitro studies suggest that NRP-1could promote renal recovery through endothelial proliferation and migration, mesangial migration and local T cell cytotoxicity. Based on these results, NRP-1 may be used as an early prognostic biomarker in LN.


Sign in / Sign up

Export Citation Format

Share Document