Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats

2013 ◽  
Vol 304 (6) ◽  
pp. F676-F685 ◽  
Author(s):  
Jun-Feng Chen ◽  
Hai-Feng Ni ◽  
Ming-Ming Pan ◽  
Hong Liu ◽  
Min Xu ◽  
...  

Tubulointerstitial macrophage infiltration is a hallmark of chronic kidney disease involved in the progression of renal fibrosis. Pirfenidone is a newly identified antifibrotic drug, the potential mechanism of which remains unclear. The aim of this study was to investigate the effects of pirfenidone on M1/M2 macrophage infiltration in nephrectomized rats. Nephrectomized rats were treated with pirfenidone by gavage for 12 wk. Twenty-four hour urinary protein, N-acetyl-β-d-glycosaminidase (NAG) activity, systolic blood pressure, and C-reactive protein were determined. Paraffin-embedded sections were stained for CD68, CCR7, and CD163 macrophages. Monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), as well as M1 and M2 macrophages secretory markers, were evaluated by real-time RT-PCR and Western blotting analysis. Pirfenidone significantly improved the elevated proteinuria and NAG activity from week 2 onward after surgery. Pirfenidone attenuated interstitial fibrosis and decreased expression of fibrotic markers including transforming growth factor-β1, connective tissue growth factor, α-smooth muscle actin, fibronectin, and fibroblast-specific protein-1. Pirfenidone significantly decreased the infiltrating macrophages. The number of M1 and M2 macrophages was significantly lower after pirfenidone treatment. MCP-1 and MIP-1α were increased in nephrectomized rats at mRNA and protein levels. Pirfenidone treatment significantly inhibited their expression. The TNF-α, IL-6, and nitric oxide synthases-2 expressed by M1 macrophages were increased in nephrectomized rats, and pirfenidone significantly attenuated their expression. Pirfenidone treatment also significantly decreased arginase-1, dectin-1, CD206, and CD86 expressed by M2 macrophages. Thus pirfenidone inhibits M1 and M2 macrophage infiltration in 5/6 nephrectomized rats, which suggests its efficacy in the early and late periods of renal fibrosis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjuan Sun ◽  
Chang Hyun Byon ◽  
Dong Hyun Kim ◽  
Hoon In Choi ◽  
Jung Sun Park ◽  
...  

Maslinic acid (MA), also named crategolic acid, is a pentacyclic triterpene extracted from fruits and vegetables. Although various beneficial pharmacological effects of MA have been revealed, its effect on renal fibrosis remains unclear. This study was designed to clarify whether MA could attenuate renal fibrosis and determine the putative underlying molecular mechanisms. We demonstrated that MA-treated mice with unilateral ureteral obstruction (UUO) developed a histological injury of low severity and exhibited downregulated expression of fibrotic markers, including α-smooth muscle actin (α-SMA), vimentin, and fibronectin by 38, 44 and 40%, and upregulated expression of E-cadherin by 70% as compared with untreated UUO mice. Moreover, MA treatment restored the expression levels of α-SMA, connective tissue growth factor, and vimentin to 10, 7.8 and 38% of those induced by transforming growth factor (TGF)-β in NRK49F cells. MA decreased expression of Smad2/3 phosphorylation and Smad4 in UUO kidneys and TGF-β treated NRK49F cells (p < 0.05, respectively). Notably, MA specifically interferes with MyD88, an adaptor protein, thereby mitigating Smad4 nuclear expression (p < 0.01 compared to TGF-β treated group) and ameliorating renal fibrotic changes (p < 0.01 for each fibrotic markers compared to TGF-β induced cells). In addition, in the UUO model and lipopolysaccharide-induced NRK49F cells, MA treatment decreased the expression of IL-1β, TGF-α and MCP-1, ICAM-1, associated with the suppression of NF-κB signaling. These findings suggest that MA is a potential agent that can reduce renal interstitial fibrosis, to some extent, via targeting TGF-β/Smad and MyD88 signaling.


2020 ◽  
Vol 28 (5) ◽  
pp. 1237-1252
Author(s):  
Hyeonyoul Lee ◽  
Heungdeok Kim ◽  
Jinwon Seo ◽  
Kyoungbaek Choi ◽  
Yunsin Lee ◽  
...  

Abstract Osteoarthritis (OA) is the most common form of arthritis, characterized by cartilage destruction, pain and inflammation in the joints. Existing medications can provide relief from the symptoms, but their effects on the progression of the disease are limited. TissueGene-C (TG-C) is a novel cell and gene therapy for the treatment of OA, comprising a mixture of human allogeneic chondrocytes and irradiated cells engineered to overexpress transforming growth factor-β1 (TGF-β1). This study aims to investigate the efficacy and mechanism of action of TG-C in a rat model of OA. Using the monosodium-iodoacetate (MIA) model of OA, we examined whether TG-C could improve OA symptoms and cartilage structure in rats. Our results showed that TG-C provided pain relief and cartilage structural improvement in the MIA OA model over 56 days. In parallel with these long-term effects, cytokine profiles obtained on day 4 revealed increased expression of interleukin-10 (IL-10), an anti-inflammatory cytokine, in the synovial lavage fluid. Moreover, the increased levels of TGF-β1 and IL-10 caused by TG-C induced the expression of arginase 1, a marker of M2 macrophages, and decreased the expression of CD86, a marker of M1 macrophages. These results suggest that TG-C exerts a beneficial effect on OA by inducing a M2 macrophage-dominant micro-environment. Cell therapy using TG-C may be a promising strategy for targeting the underlying pathogenic mechanisms of OA, reducing pain, improving function, and creating a pro-anabolic micro-environment. This environment supports cartilage structure regeneration and is worthy of further evaluation in future clinical trials.


2002 ◽  
Vol 283 (4) ◽  
pp. F707-F716 ◽  
Author(s):  
Elizabeth Gore-Hyer ◽  
Daniel Shegogue ◽  
Malgorzata Markiewicz ◽  
Shianlen Lo ◽  
Debra Hazen-Martin ◽  
...  

Transforming growth factor-β (TGF-β) and connective tissue growth factor (CTGF) are ubiquitously expressed in various forms of tissue fibrosis, including fibrotic diseases of the kidney. To clarify the common and divergent roles of these growth factors in the cells responsible for pathological extracellular matrix (ECM) deposition in renal fibrosis, the effects of TGF-β and CTGF on ECM expression in primary human mesangial (HMCs) and human proximal tubule epithelial cells (HTECs) were studied. Both TGF-β and CTGF significantly induced collagen protein expression with similar potency in HMCs. Additionally, α2(I)-collagen promoter activity and mRNA levels were similarly induced by TGF-β and CTGF in HMCs. However, only TGF-β stimulated collagenous protein synthesis in HTECs. HTEC expression of tenascin-C (TN-C) was increased by TGF-β and CTGF, although TGF-β was the more potent inducer. Thus both growth factors elicit similar profibrogenic effects on ECM production in HMCs, while promoting divergent effects in HTECs. CTGF induction of TN-C, a marker of epithelial-mesenchymal transdifferentiation (EMT), with no significant induction of collagenous protein synthesis in HTECs, may suggest a more predominant role for CTGF in EMT rather than induction of excessive collagen deposition by HTECs during renal fibrosis.


2013 ◽  
Vol 305 (4) ◽  
pp. F477-F484 ◽  
Author(s):  
Sarah C. Huen ◽  
Gilbert W. Moeckel ◽  
Lloyd G. Cantley

Macrophage infiltration is a prominent feature of the innate immune response to kidney injury. The persistence of macrophages is associated with tubulointerstitial fibrosis and progression of chronic kidney disease. Macrophages are known to be major producers of transforming growth factor-β1 (TGF-β1), especially in the setting of phagocytosis of apoptotic cells. TGF-β1 has long been implicated as a central mediator of tissue scarring and fibrosis in many organ disease models, including kidney disease. In this study, we show that homozygous deletion of Tgfb1 in myeloid lineage cells in mice heterozygous for Tgfb1 significantly reduces kidney Tgfb1 mRNA expression and Smad activation at late time points after renal ischemia-reperfusion injury. However, this reduction in kidney Tgfb1 expression and signaling results in only a modest reduction of isolated fibrosis markers and does not lead to decreased interstitial fibrosis in either ischemic or obstructive injury models. Thus, targeting macrophage-derived TGF-β1 does not appear to be an effective therapy for attenuating progressive renal fibrosis after kidney injury.


2013 ◽  
Vol 305 (2) ◽  
pp. F173-F181 ◽  
Author(s):  
Jun Morinaga ◽  
Yutaka Kakizoe ◽  
Taku Miyoshi ◽  
Tomoaki Onoue ◽  
Miki Ueda ◽  
...  

Interstitial fibrosis is a final common pathway for the progression of chronic kidney diseases. Activated fibroblasts have an extremely important role in the progression of renal fibrosis, and transforming growth factor (TGF)-β1 is a major activator of fibroblasts. Since previous reports have indicated that serine protease inhibitors have a potential to inhibit TGF-β1 signaling in vitro, we hypothesized that a synthetic serine protease inhibitor, camostat mesilate (CM), could slow the progression of renal fibrosis. TGF-β1 markedly increased the phosphorylation of TGF-β type I receptor, ERK 1/2, and Smad2/3 and the levels of profibrotic markers, such as α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1, in renal fibroblasts (NRK-49F cells), and they were all significantly reduced by CM. In protocol 1, 8-wk-old male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) and were concurrently treated with a slow-release pellet of CM or vehicle for 14 days. Protocol 2 was similar to protocol 1 except that CM was administered 7 days after UUO. CM substantially improved renal fibrosis as determined by sirius red staining, collagen expression, and hydroxyproline levels. The phosphorylation of ERK1/2 and Smad2/3 and the levels of α-SMA, CTGF, promatrix metalloproteinase-2, and matrix metalloproteinase-2 were substantially increased by UUO, and they were all significantly attenuated by CM. These antifibrotic effects of CM were also observed in protocol 2. Our present results suggest the possibility that CM might represent a new class of therapeutic drugs for the treatment of renal fibrosis through the suppression of TGF-β1 signaling.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Yuting Chen ◽  
Qi Yan ◽  
Mengyue Lv ◽  
Kaixin Song ◽  
Yue Dai ◽  
...  

AbstractFollowing a chronic insult, renal tubular epithelial cells (TECs) contribute to the development of kidney fibrosis through dysregulated lipid metabolism that lead to lipid accumulation and lipotoxicity. Intracellular lipid metabolism is tightly controlled by fatty acids (FAs) uptake, oxidation, lipogenesis, and lipolysis. Although it is widely accepted that impaired fatty acids oxidation (FAO) play a crucial role in renal fibrosis progression, other lipid metabolic pathways, especially FAs uptake, has not been investigated in fibrotic kidney. In this study, we aim to explore the potential mechanically role of FAs transporter in the pathogenesis of renal fibrosis. In the present study, the unbiased gene expression studies showed that fatty acid transporter 2 (FATP2) was one of the predominant expressed FAs transport in TECs and its expression was tightly associated with the decline of renal function. Treatment of unilateral ureteral obstruction (UUO) kidneys and TGF-β induced TECs with FATP2 inhibitor (FATP2i) lipofermata restored the FAO activities and alleviated fibrotic responses both in vivo and in vitro. Moreover, the expression of profibrotic cytokines including TGF-β, connective tissue growth factor (CTGF), fibroblast growth factor (FGF), and platelet-derived growth factor subunit B (PDGFB) were all decreased in FATP2i-treated UUO kidneys. Mechanically, FATP2i can effectively attenuate cell apoptosis and endoplasmic reticulum (ER) stress induced by TGF-β treatment in cultured TECs. Taking together, these findings reveal that FATP2 elicits a profibrotic response to renal interstitial fibrosis by inducing lipid metabolic reprogramming including abnormal FAs uptake and defective FAO in TECs.


2014 ◽  
Vol 34 (5) ◽  
Author(s):  
Guo-tao Chen ◽  
Ling Zhang ◽  
Xiao-hui Liao ◽  
Ru-yu Yan ◽  
Ying Li ◽  
...  

Renal fibrosis is a hallmark in CKD (chronic kidney disease) and is strongly correlated to the deterioration of renal function that is characterized by tubulointerstitial fibrosis, tubular atrophy, glomerulosclerosis and disruption of the normal architecture of the kidney. ALR (augmenter of liver regeneration) is a growth factor with biological functions similar to those of HGF (hepatocyte growth factor). In this study, our results indicate that endogenous ALR is involved in the pathological progression of renal fibrosis in UUO (unilateral ureteral obstruction) rat model. Moreover, we find that administration of rhALR (recombinant human ALR) significantly alleviates renal interstitial fibrosis and reduces renal-fibrosis-related proteins in UUO rats. Further investigation reveals that rhALR suppresses the up-regulated expression of TGF-β1 (transforming growth factor β1) induced by UUO operation in the obstructed kidney, and inhibits Smad2 and Smad3 phosphorylation activated by the UUO-induced injury in the animal model. Therefore we suggest that ALR is involved in the progression of renal fibrosis and administration of rhALR protects the kidney against renal fibrosis by inhibition of TGF-β/Smad activity.


2020 ◽  
Author(s):  
hangjie ying ◽  
min Fang ◽  
Qing Qing Hang ◽  
Ya mei Chen ◽  
Xu Qian ◽  
...  

Abstract Background:Radiation-induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into early-stage radiation pneumonia (RP) and late-stage radiation-induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)-approved drug for idiopathic pulmonary fibrosis (IPF) treatment, and its mechanism in the treatment of RILF. Methods:A series of in vitro and in vivo assays were performed to explore the role and mechanism of PFD in the prevention and treatment of RILF. Results:Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor-β1(TGF-β1) /drosophila mothers against decapentaplegic 3 (Smad3) signaling pathway. Moreover, PFD treatment decreased the radiation-induced expression of TGF-β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL-4- and IL13-induced M2 macrophage polarization was suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase-1(ARG-1), chitinase 3-like 3 (YM-1) and TGF-β1. Notably, the PFD-induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa-B (NF-κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation-induced chemokine secretion in MLE-12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF-β1 from M2 macrophages by attenuating the activation of TGF-β1/Smad3. Conclusion:PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF-β1/Smad3.


Sign in / Sign up

Export Citation Format

Share Document