A novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction

Author(s):  
Wei Gong ◽  
Lingling Lu ◽  
Yu Zhou ◽  
Jiaye Liu ◽  
Haoyang Ma ◽  
...  

Stimulator of interferon genes (STING) is an important adaptor in the cytosolic DNA sensing pathways. Recent study found that the deletion of STING ameliorated cisplatin-induced acute kidney injury (AKI), suggesting that STING could serve as a potential target for AKI therapy. Up to now, a series of small-molecule STING inhibitors/antagonists have been identified. However, none of research was performed to explore the role of human STING inhibitors in AKI. Here we investigated the effect of a newly generated covalent antagonist H151 targeting both human and murine STING, in cisplatin-induced AKI. We found that H151 treatment significantly ameliorated cisplatin-induced kidney injury as shown by the improvement of renal function, kidney morphology and renal inflammation. Besides, tubular cell apoptosis and the increased renal tubular injury marker NGAL induced by cisplatin were also effectively attenuated in H151-treated mice. Moreover, the mitochondrial injury caused by cisplatin was also reversed as evidenced by the improved mitochondrial morphology, restored mitochondrial DNA (mtDNA) content, and reversed mitochondrial genes expression. Finally, we observed enhanced mtDNA levels in the plasma of patients receiving platinum-based chemotherapy compared to the healthy controls, which could potentially activate STING signaling. Taken together, these findings suggested that H151 could be a potential therapeutic agent for treating AKI possibly through inhibiting STING-mediated inflammation and mitochondrial injury.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Tomoaki Nagao ◽  
Takafumi Okura ◽  
Akiko Tanino ◽  
Ken-ichi Miyoshi ◽  
Masayoshi Kukida ◽  
...  

Osteopontin (OPN), a secreted glycosylated phosphoprotein and pro-inflammatory cytokine, has been implicated in the pathology of several renal conditions, especially renal fibrosis in chronic kidney disease. OPN is slightly expressed in renal tubular cells in normal condition, but after acute tubular injury, OPN is highly induced in these cells. However, the role of induced OPN is still unclear. The aim of this study was to clarify the roles of OPN in acute kidney injury (AKI). AKI was induced in wild type (WT) and OPN knockout (KO) mice by using folic acid (FA) injection (0.35mg/kg). After 2days of injection, 34% of WT mice died, whereas 54% of KO died from renal failure. Kidneys from survived mice were removed and the renal histological changes, protein expression were examined. BUN and Creatinine levels were markedly elevated in WT-AKI and KO-AKI mice (BUN: WT-sham; 25.7±4.7mg/dl, WT-AKI; 315.0±173.2mg/dl, KO-AKI; 337.7±163.7mg/dl, Creatinine: WT-sham; 0.08±0.03 mg/dl, WT-AKI; 1.60±0.87 mg/dl, KO-AKI; 1.80±0.94 mg/dl). Renal OPN mRNA expression was increased in WT-AKI mice compared to WT-sham mice (p<0.05). High levels of OPN expression in renal tubular cells were induced in WT-AKI mice. TUNEL positive tubular cells were increased in KO-AKI mice compared to WT-AKI mice. In immunohistochemical analysis, Kidney injury molecules 1 (Kim-1) positive tubular cells were also highly increased in KO-AKI mice compared to WT-AKI mice. In contrast, LC3B (autophagy related protein) positive tubular cells were decreased in KO-AKI mice compared to WT-AKI mice. These results indicate that OPN deficiency exacerbates tubular injury via through the inhibiting autophagy in folic acid induced AKI mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaye Liu ◽  
Zhanjun Jia ◽  
Wei Gong

Mitochondrial dysfunction is increasingly considered as a critical contributor to the occurrence and progression of acute kidney injury (AKI). However, the mechanisms by which damaged mitochondria mediate AKI progression are multifactorial and complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could serve as a danger-associated molecular pattern (DAMP) and activate the innate immune system through STING, TLR9, NLRP3, and some other adaptors, and further mediate tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the important role of circulating mtDNA and its related pathways in the progression of AKI, and regulating the proteins involved in these pathways may be an effective strategy to reduce renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of recent studies on mtDNA-mediated renal pathological events to provide new insights in the setting of AKI.


2019 ◽  
Vol 317 (2) ◽  
pp. F264-F274 ◽  
Author(s):  
Satoshi Tanimura ◽  
Katsuyuki Tanabe ◽  
Hiromasa Miyake ◽  
Kana Masuda ◽  
Keigo Tsushida ◽  
...  

Acute kidney injury (AKI) is frequently encountered in clinical practice, particularly secondarily to cardiovascular surgery and administration of nephrotoxic agents, and is increasingly recognized for initiating a transition to chronic kidney disease. Clarifying the pathogenesis of AKI could facilitate the development of novel preventive strategies, because the occurrence of hospital-acquired AKI is often anticipated. Vasohibin-1 (VASH1) was initially identified as an antiangiogenic factor derived from endothelial cells. VASH1 expression in endothelial cells has subsequently been reported to enhance cellular stress tolerance. Considering the importance of maintaining peritubular capillaries in preventing the progression of AKI, the present study aimed to examine whether VASH1 deletion is involved in the pathogenesis of cisplatin-induced AKI. For this, we injected male C57BL/6J wild-type (WT) and VASH1 heterozygous knockout (VASH1+/−) mice intraperitoneally with either 20 mg/kg cisplatin or vehicle solution. Seventy-two hours after cisplatin injection, increased serum creatinine concentrations and renal tubular injury accompanied by apoptosis and oxidative stress were more prominent in VASH1+/− mice than in WT mice. Cisplatin-induced peritubular capillary loss was also accelerated by VASH1 deficiency. Moreover, the increased expression of ICAM-1 in the peritubular capillaries of cisplatin-treated VASH1+/− mice was associated with a more marked infiltration of macrophages into the kidney. Taken together, VASH1 expression could have protective effects on cisplatin-induced AKI probably by maintaining the number and function of peritubular capillaries.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Fei Zhao ◽  
Li-Xin Feng ◽  
Qian Liu ◽  
Hong-Shen Wang ◽  
Cheng-Yuan Tang ◽  
...  

Contrast-induced acute kidney injury (CI-AKI) is the third common cause of acute kidney injury (AKI), which is associated with poor short- and long-term outcomes. Currently, effective therapy strategy for CI-AKI remains lacking. Stanniocalcin-1 (STC1) is a conserved glycoprotein with antiapoptosis and anti-inflammatory functions, but the role of STC1 in controlling CI-AKI is unknown. Here, we demonstrated a protective role of STC1 in contrast-induced injury in cultured renal tubular epithelial cells and CI-AKI rat models. Recombinant human STC1 (rhSTC1) regulated mitochondrial quality control, thus suppressing contrast-induced mitochondrial damage, oxidative stress, inflammatory response, and apoptotic injury. Mechanistically, activation of the Nrf2 signaling pathway contributes critically to the renoprotective effect of STC1. Together, this study demonstrates a novel role of STC1 in preventing CI-AKI and reveals Nrf2 as a molecular target of STC1. Therefore, this study provides a promising preventive target for the treatment of CI-AKI.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Dingping Yang ◽  
Dingwei Yang

The precise mechanisms underlying contrast-induced acute kidney injury (CI-AKI) are not well understood. Intracellular Ca2+overload is considered to be a key factor in CI-AKI. Voltage-dependent Ca2+channel (VDC) and Na+/Ca2+exchanger (NCX) system are the main pathways of intracellular Ca2+overload in pathological conditions. Here, we review the potential underlying mechanisms involved in CI-AKI and discuss the role of NCX-mediated intracellular Ca2+overload in the contrast media-induced renal tubular cell injury and renal hemodynamic disorder.


2019 ◽  
Vol 20 (20) ◽  
pp. 5238 ◽  
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Smaranda Radu ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.


2019 ◽  
Vol 44 (5) ◽  
pp. 1002-1013 ◽  
Author(s):  
Wen Zhang ◽  
Yunwen Yang ◽  
Huiping Gao ◽  
Yue Zhang ◽  
Zhanjun Jia ◽  
...  

Background: Some researches revealed that mitochondrial dysfunction is associated with various kidney injury. However, the role of mitochondrial dysfunction in the pathogenesis of acute kidney injury (AKI) still needs evidence. Methods: We evaluated the effect of mitochondrial complex I inhibitor rotenone on folic acid (FA)-induced AKI in mice. Results: Strikingly, the mice pretreated with rotenone at a dose of 200 ppm in food showed exacerbated kidney injury as shown by higher levels of blood urea nitrogen and creatinine compared with FA alone group. Meanwhile, both renal tubular injury score and the expression of renal tubular injury marker neutrophil gelatinase-associated lipocalin were further elevated in rotenone-pretreated mice, suggesting the deteriorated renal tubular injury. Moreover, the decrements of mitochondrial DNA copy number and the expressions of mitochondrial Cytochrome c oxidase subunit 1, mitochondrial NADH dehydrogenase subunit 1, and mitochondria-specific superoxide dismutase (SOD2) in the kidneys of FA-treated mice were further reduced in rotenone-pretreated mice, indicating the aggravated mitochondrial damage. In parallel with the SOD2 reduction, the oxidative stress markers of malondialdehyde and HO-1 displayed greater increment in AKI mice with rotenone pretreatment in line with the deteriorated apoptotic response and inflammation. Conclusion: Our results suggested that the inhibition of mitochondrial complex I activity aggravated renal tubular injury, mitochondrial damage, oxidative stress, cell apoptosis, and inflammation in FA-induced AKI.


2012 ◽  
Vol 14 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Matthias Dupont ◽  
Kevin Shrestha ◽  
Dhssraj Singh ◽  
Adiveh Awad ◽  
Cynthia Kovach ◽  
...  

Nephron ◽  
2020 ◽  
Vol 144 (12) ◽  
pp. 609-612
Author(s):  
Abeda Jamadar ◽  
Reena Rao

Acute kidney injury (AKI) is a common clinical syndrome that involves renal tubular epithelial cell death and leads to acute decline in renal function. Improper tubular regeneration following AKI often leads to CKD. We discuss the role of a serine/threonine protein kinase called glycogen synthase kinase-3 (GSK3) in renal tubular injury and renal fibrosis. We also highlight the importance of GSK3 as a potential drug target in AKI patients and molecular mechanisms promoting tissue regeneration.


2021 ◽  
pp. 1-7
Author(s):  
Loris Allan Juett ◽  
Lewis J. James ◽  
Stephen Andrew Mears

Acute kidney injury (AKI) incidence (diagnosed by changes in serum creatinine [Cr]) following prolonged endurance events has been reported to be anywhere from 4 to 85%, and hypohydration may contribute to this. Whilst an increase in serum Cr indicates impaired kidney function, this might be influenced by muscle damage. Therefore, the use of other AKI biomarkers which can detect renal tubular injury may be more appropriate. The long-term consequences of AKI are not well understood, but there are some potential concerns of an increased subsequent risk of chronic kidney disease (CKD). Therefore, this brief review explores the effects of exercise training/competition on novel AKI biomarkers and the potential influence of fluid intake. The increase in novel AKI biomarkers following prolonged endurance events suggests renal tubular injury. This is likely due to the long duration and relatively high exercise intensity, producing increased sympathetic tone, body temperature, hypohydration, and muscle damage. Whilst muscle damage appears to be an important factor in the pathophysiology of exercise-associated AKI, it may require coexisting hypohydration. Fluid intake seems to play a role in exercise-associated AKI, as maintaining euhydration with water ingestion during simulated physical work in the heat appears to attenuate rises in AKI biomarkers. The composition of fluid intake may also be important, as high-fructose drinks have been shown to exacerbate AKI biomarkers. However, it is yet to be seen if these findings are applicable to athletes performing strenuous exercise in a temperate environment. Additionally, further work should examine the effects of repeated bouts of strenuous exercise on novel AKI biomarkers.


Sign in / Sign up

Export Citation Format

Share Document