Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise

1975 ◽  
Vol 38 (5) ◽  
pp. 763-767 ◽  
Author(s):  
J. Karlsson ◽  
F. Bonde-Petersen ◽  
J. Henriksson ◽  
H. G. Knuttgen

The ability of additional muscles to perform after certain other muscles of the body had been exercised to exhaustion was studied in three male subjects. Exhaustive exercise was performed in two series: series L-A, a bout of leg exercise preceded a bout of arm exercise; series A-L, arm preceded leg (6-min recovery between bouts). Biopsies were taken during the course of each experiment from both the deltoideus and vastus lateralis muscles for determination of ATP, creatine phosphate, lactate, and pyruvate. Exhaustive exercise led to marked elevations in lactate and decreases in ATP and CP in exercised muscle and marked increases in blood lactate concentration. Similar changes, especially in lactate, were observed during and after the first exercise bout in nonexercised muscle. When arm or leg exercise was performed as the second bout, decreases in performance time were observed as compared to performance as the initial bout. It is suggested that the performance potential of muscle is decreased because of internal changes elicited by elevated blood lactate and/or blood H+ concentrations brought about by other muscle groups previously exercised to exhaustion.

1994 ◽  
Vol 76 (2) ◽  
pp. 634-640 ◽  
Author(s):  
B. Kayser ◽  
M. Narici ◽  
T. Binzoni ◽  
B. Grassi ◽  
P. Cerretelli

Exhaustive dynamic exercise with large muscle groups in chronic hypobaric hypoxia may be limited by central (nervous) rather than peripheral (metabolic) fatigue. Six males [32 +/- 4 (SD) yr] at sea level (SL) and after 1-mo acclimatization at 5,050 m (HA) performed exhaustive dynamic forearm exercise at a constant absolute load, requiring regional maximum aerobic power at SL, and exhaustive cycle exercise at prevailing maximal O2 uptake (HA approximately equal to 80% SL). Exhaustion time (t(ex)), blood O2 saturation (SaO2), and heart rate (HR) were measured during each exercise bout. Before and after both arm and leg exercise, lactate concentration ([La]), PO2, PCO2, and pH were measured in arterialized blood samples. Integrated electromyogram activity (IEMG) and mean (MPF) and centroid (CPF) power frequencies of the EMG power spectrum during exercise were calculated for forearm flexors and vastus lateralis muscle. t(ex) for forearm exercise at the same absolute load was the same at SL and HA. Similar increases of IEMG (+214% at SL vs. +172% at HA) and decreases of CPF (-13% at SL vs. -16% at HA) and MPF (-22% at SL vs. -21% at HA) were observed. By contrast, at HA, for similar t(ex), leg exercise had to be performed at the same relative (i.e., prevailing maximal O2 uptake) but lower absolute load (approximately equal to 80% of SL).(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 66 (1) ◽  
pp. 142-150 ◽  
Author(s):  
H. J. Green ◽  
J. Sutton ◽  
P. Young ◽  
A. Cymerman ◽  
C. S. Houston

To investigate the metabolic basis for the reduction in peak blood lactate concentration that occurs with maximal exercise after acclimatization to altitude, eight male subjects [maximal O2 uptake of 51.2 +/- 3.0 (SE) ml.kg-1.min-1] were acclimated to progressive hypobaria over a 40-day period. Before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) the subjects performed progressive cycle exercise to exhaustion. Analysis of muscle samples obtained from the vastus lateralis before exercise and at exhaustion indicated a pronounced reduction (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 282 Torr (39.2 +/- 11) compared with SL-1 (113 +/- 9.7), 380 Torr (94.6 +/- 18), and SL-2 (92.7 +/- 22). For the other glycolytic intermediates studied (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate) only the increase in glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate were blunted (P less than 0.05) at 282 Torr. The reduction in muscle glycogen concentration during exercise was similar (P less than 0.05) for all environmental conditions. Although exercise resulted in reductions (P less than 0.05) in ATP and creatine phosphate averaging 30 and 51%, respectively, the magnitude of the change was not dependent on the degree of hypobaria. Inosine monophosphate was elevated (P less than 0.05) approximately 11-fold with exercise at both SL-1 and SL-2. These findings support the hypothesis that the lower lactate concentration observed at 282 Torr after exhaustive exercise is due to a reduction in anaerobic glycolysis.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 75 (2) ◽  
pp. 870-878 ◽  
Author(s):  
D. L. Thompson ◽  
J. Y. Weltman ◽  
A. D. Rogol ◽  
D. L. Metzger ◽  
J. D. Veldhuis ◽  
...  

Cholinergic and opioid pathways have been implicated as mediators of the increased growth hormone (GH) release observed during exercise. This study compared the GH responses induced by a moderate-intensity exercise bout during treatment with placebo (Plac), the opioid receptor antagonist naltrexone (Nalt), the indirect cholinergic agonist pyridostigmine (PD), or a combination of the two drugs (P + N). Ten active males served as subjects (age, 25.1 +/- 0.6 yr; wt, 79.7 +/- 2.5 kg; % body fat, 14.9 +/- 1.4; peak oxygen consumption, 46.2 +/- 2.7 ml.kg-1 x min-1). Blood samples were drawn at 5-min intervals during the 4.5-h testing period to determine the GH concentration. The testing period was divided as follows: 0600–700 h = baseline, 0700–0800 h = preexercise, 0800–0830 h = exercise, and 0830–1030 h = recovery. Drugs were administered 1 h before exercise (at 0700 h). Exercise consisted of 30 min of cycling at an individualized work load previously found to elicit a blood lactate concentration of 2.5 mM. Heart rate, oxygen consumption, blood lactate, and blood glucose were measured throughout the exercise period. Results indicated that neither the resting GH concentration nor the metabolic parameters during exercise were altered by the treatments. Peak serum GH concentration was not significantly altered by the treatments (range 7.3 +/- 2.0 to 12.6 +/- 4.4 micrograms/l).(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Chihiro Kojima ◽  
Keiichi Yamaguchi ◽  
Hiroto Ito ◽  
Nobukazu Kasai ◽  
Olivier Girard ◽  
...  

PurposeThis study aimed to examine the effect of applying BFR during rest periods of repeated cycling sprints on muscle oxygenation.MethodsSeven active males performed 5 × 10-s maximal pedaling efforts with 40-s passive rest, with or without BFR application during rest period. BFR was applied for 30 s between sprints (between 5 and 35 s into rest) through a pneumatic pressure cuff inflated at 140 mmHg. Vastus lateralis muscle oxygenation was monitored using near-infrared spectroscopy. In addition, blood lactate concentration and heart rate were also evaluated.ResultsThe BFR trial showed significantly lower oxyhemoglobin (oxy-Hb) and tissue saturation (StO2) levels than the CON trial (P < 0.05). However, power output and blood lactate concentration did not significantly differ between the two trials (P > 0.05).ConclusionApplying BFR during rest periods of repeated cycling sprints decreased muscle oxygenation of active musculature, without interfering with power output during sprints.


1988 ◽  
Vol 64 (6) ◽  
pp. 2622-2630 ◽  
Author(s):  
E. F. Coyle ◽  
A. R. Coggan ◽  
M. K. Hopper ◽  
T. J. Walters

Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6–5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.


Author(s):  
Gaelle Deley ◽  
Carole Cometti ◽  
Christos Paizis ◽  
Nicolas Babault

For years, athletes and coaches have been looking for new strategies to optimize post-exercise recovery; it has recently been suggested that combining several methods might be a great option. This study therefore aimed to investigate the efficacy of contrast water therapy (CWT) used alone or associated with pedaling to recover from exhaustive exercise. After high-intensity intermittent exercise, 33 participants underwent 30 min of either (i) passive rest (PASSIVE), (ii) CWT with pedaling while in water (COMB) or (iii) classic CWT (CWT). Blood lactate concentration, countermovement jump height and perceived exhaustion were recorded before exercise, immediately after, after recovery interventions and after an additional 30 min of passive rest. Blood lactate concentration returned to initial values after 30 min of COMB (5.9 mmol/L), whereas in the other conditions even 60 min was not enough (10.2 and 9.6 mmol/L for PASSIVE and CWT, respectively, p < 0.05). Jump height was close to initial values after 30 min of CWT (37.3 cm), whereas values were still depressed after 60 min in the PASSIVE (36.0 cm) and COMB (35.7 cm) conditions (p < 0.05). Perceived exertion was still high for all conditions after 60 min. The present results are in favor of the utilization of CWT after exhaustive exercise, but the modality has to be chosen depending on what comes next (subsequent exercise scheduled in the following hours or further away).


2020 ◽  
Vol 19 (1) ◽  
pp. 32
Author(s):  
Gustavo Taques Marczynski ◽  
Luís Carlos Zattar Coelho ◽  
Leonardo Emmanuel De Medeiros Lima ◽  
Rodrigo Pereira Da Silva ◽  
Dilmar Pinto Guedes Jr ◽  
...  

The aim of this study was to analyze the influence of two velocities of execution relative to blood lactate concentration in strength training exercise until the momentary concentric failure. Fifteen men (29.1 ± 5.9 years), trained, participated in the experiment. The volunteers performed three bench press sessions, with an interval of 48 hours between them. At the first session, individuals determined loads through the 10-12 RMs test. In the following two sessions, three series with 90 seconds of interval were performed, in the second session slow execution speed (cadence 3030) and later in the third session fast speed (cadence 1010). For statistical analysis, the Student-T test was used for an independent sample study and considered the value of probability (p) ≤ 0.05 statistically significant. By comparing the number of repetitions and time under tension of the two runs, all series compared to the first presented significant reductions (p < 0.05). The total work volume was higher with the fast speed (p < 0.05). The study revealed that rapid velocities (cadence 1010) present a higher concentration of blood lactate when compared to slow runs (cadence 3030). The blood lactate concentration, in maximum repetitions, is affected by the speed of execution.Keywords: resistance training, cadence, blood lactate.


1993 ◽  
Vol 75 (6) ◽  
pp. 2727-2733 ◽  
Author(s):  
K. H. McKeever ◽  
K. W. Hinchcliff ◽  
D. F. Gerken ◽  
R. A. Sams

Four mature horses were used to test the effects of two doses (50 and 200 mg) of intravenously administered cocaine on hemodynamics and selected indexes of performance [maximal heart rate (HRmax), treadmill velocity at HRmax, treadmill velocity needed to produce a blood lactate concentration of 4 mmol/l, maximal mixed venous blood lactate concentration, maximal treadmill work intensity, and test duration] measured during an incremental treadmill test. Both doses of cocaine increased HRmax approximately 7% (P < 0.05). Mean arterial pressure was 30 mmHg greater (P < 0.05) during the 4- to 7-m/s steps of the exercise test in the 200-mg trial. Neither dose of cocaine had an effect on the responses to exertion of right atrial pressure, right ventricular pressure, or maximal change in right ventricular pressure over time. Maximal mixed venous blood lactate concentration increased 41% (P < 0.05) with the 50-mg dose and 75% (P < 0.05) with the 200-mg dose during exercise. Administration of cocaine resulted in decreases (P < 0.05) in the treadmill velocity needed to produce a blood lactate concentration of 4 mmol/l from 6.9 +/- 0.5 and 6.8 +/- 0.9 m/s during the control trials to 4.4 +/- 0.1 m/s during the 200-mg cocaine trial. Cocaine did not alter maximal treadmill work intensity (P > 0.05); however, time to exhaustion increased by approximately 92 s (15%; P < 0.05) during the 200-mg trial.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document