Indices of thermoregulatory strain for moderate exercise in the heat

1978 ◽  
Vol 44 (6) ◽  
pp. 889-899 ◽  
Author(s):  
R. R. Gonzalez ◽  
L. G. Berglund ◽  
A. P. Gagge

The effect of varying humidity and dry bulb temperatures was studied on five normal male unclothed subjects while exercising (40–45 min) at 28% VO2max. Air movement was 0.75 m.s-1. The initial test and the 16th test on each subject both done at 50 degrees C and 30 Torr (32% rh). Each subject did the intervening 14 experiments twice per day at varying ambient temperature (Ta) and water vapor pressure (Pa) levels, so selected to progressively increase skin wettedness levels. Mean skin temperature (Tsk) and esophageal temperature (Tes), heart rate (HR), skin evaporative heat loss (Esk), and warm discomfort were continuously observed. Skin wettedness (w) was evaluated as the ratio of the observed Esk to the maximum evaporative capacity of the environment. A rational effective temperature (ET) is defined as the dry bulb temperature at 50% rh in which the total heat exchange from skin surface would be the same as in the test environment, described by the observed Ta and Pa. The results showed that 1) during steady state both HR and Tes were unaffected by Ta from 26 to 41 degrees C responding to the level of exercise intensity, when Pa less than or equal to 20 Torr; 2) both mean body temperature, found by weighting Tsk:Tes by 1:9, and ET were each significant indicators of physiological strain when Pa greater than 20 Torr; 3) a level of strain, caused by skin wettedness values greater than 0.5, is suggested as a primary condition necessary for inducing heat acclimation.

1979 ◽  
Vol 47 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
V. Candas ◽  
J. P. Libert ◽  
J. J. Vogt

Before and after heat acclimation, four male resting subjects were exposed to humid heat that caused levels of skin wettedness ranging from 50 to 100%. The physical experimental conditions were chosen so that the same skin wettedness was attained with modification of only the ambient water vapor pressure, at two wind speeds (0.6 and 0.9 m . s-1). The esophageal temperature (Tes), mean skin temperature (Tsk), sweating rate (msw), and dripping sweat rate (mdr) were recorded; the amounts of local drippage in the same thermal conditions before and after acclimation were also determined. The relationship between the evaporative efficiency of sweating (eta sw) and the skin wettedness (w) is reported, as is the influence of the subject's acclimation to humid heat on adjustments of skin wettedness. The effects of the air velocity on the coefficient of evaporation and on sweating efficiency are discussed. Beneficial increases in evaporation were achievable by increasing skin wettedness only when there was a consistent drippage, which differed from one body area to another and from one subject to another. The relation of drift in body temperature to skin wettedness changed with the acclimation of the subjects.


1980 ◽  
Vol 48 (6) ◽  
pp. 999-1007 ◽  
Author(s):  
K. Kabayashi ◽  
S. M. Horvath ◽  
F. J. Diaz ◽  
D. R. Bransford ◽  
B. L. Drinkwater

The time course of whole-body sweating and thermal regulation during rest and exercise in a hot humid environment was investigated in three body postures. After 45 min rest in the upright, low-sit, or supine posture, five unacclimatized men exercised for 45 min on a bicycle ergometer in the same posture in an environment of 49.5 degrees C, 28.9 Torr. Exercise was performed at two different work loads, corresponding to about 30 and 45% of VO2max. During exercise auditory canal temperature, rectal temperature, and mean skin temperature increased linearly being highest in the supine and lowest in the upright posture. Percentage of evaporated sweat from the skin to secreted sweat was 65% in upright, 52% in the low-sit, and only 46% in the supine posture during the last 20 min of exercise regardless of work load. The time course of the rate of body heat storage was different from predictions based on the thermal balance equation. Evaporative heat loss was not 100% effective in cooling the skin surface.


2018 ◽  
Vol 50 (2) ◽  
pp. 299-307 ◽  
Author(s):  
NICHOLAS RAVANELLI ◽  
GEOFF B. COOMBS ◽  
PASCAL IMBEAULT ◽  
OLLIE JAY

1999 ◽  
Vol 202 (21) ◽  
pp. 3021-3028 ◽  
Author(s):  
T.C. Hoffman ◽  
G.E. Walsberg

We tested the hypothesis that birds can rapidly change the conductance of water vapor at the skin surface in response to a changing need for evaporative heat loss. Mourning doves (Zenaida macroura) were placed in a two-compartment chamber separating the head from the rest of the body. The rate of cutaneous evaporation was measured in response to dry ventilatory inflow at three ambient temperatures and in response to vapor-saturated ventilatory inflow at two ambient temperatures. At 35 degrees C, cutaneous evaporation increased by 72 % when evaporative water loss from the mouth was prevented, but no increase was observed at 45 degrees C. For both dry and vapor-saturated treatments, cutaneous evaporation increased significantly with increased ambient temperature. Changes in skin temperature made only a minor contribution to any observed increase in cutaneous evaporation. This indicates that Z. macroura can effect rapid adjustment of evaporative conductance at the skin in response to acute change in thermoregulatory demand.


1962 ◽  
Vol 17 (2) ◽  
pp. 311-316 ◽  
Author(s):  
F. N. Craig ◽  
E. G. Cummings

For two men walking on a treadmill and wearing two layers of permeable clothing, the same physiological strain measured by the rate of increase in mean body temperature could be produced a) next to a building outdoors in the sunshine with an average air temperature of 85 F and humidity of 20 mm Hg and b) indoors with the same humidity and an air temperature 10 F higher. Under these conditions, the underwear was mainly wet with sweat and the outer layer was mainly dry. In comparable indoor tests on a third subject, the temperature of the underwear approached equilibrium 1 or 2 F lower than the temperature of the skin at air temperatures of 85 and 115 F. The error in calculating clothing insulation introduced by assuming the clothing to be dry is determined by the size and direction of the temperature gradient between skin and air. Adding 10 F to the indoor air temperature does not duplicate all the effects of sunshine. Submitted on September 15, 1961


1985 ◽  
Vol 58 (3) ◽  
pp. 928-935 ◽  
Author(s):  
R. R. Gonzalez ◽  
K. Cena

Five males [age 28 +/- 8 yr; maximum O2 uptake (VO2max) 50 +/- 6 ml O2 . kg-1 . min-1; body wt 70 +/- 3 kg; DuBois surface area 1.85 +/- 0.02 m2] exercised on a cycle ergometer, placed on a Potter scale, at 31% VO2max for up to 2 h at an ambient temperature (Ta) of 25 degrees C and a dew-point temperature of 15 degrees C. Air movement was varied from still air to 0.4 and 2 m/s. Each subject, in separate runs, wore a track suit (TS ensemble) of 60% polyester-40% cotton (effective clo = 0.5); a Gortex parka (GOR ensemble), covering a sweat shirt and bottom of TS (effective clo = 1.4); or the TS ensemble covered by polyethylene overgarment (POG ensemble). Esophageal, skin temperature (Tsk) at eight sites, and heart rate were continuously recorded. Dew-point sensors recorded temperatures under the garments at ambient and chest (windward site) and midscapular sites. Local skin wettedness (loc w) and ratio of evaporative heat loss (Esk) to maximum evaporative capacity were determined. An observed average effective permeation (Pe, W . m-2 . Torr-1) was calculated as Esk/loc w (Ps,sk - Pw), where w is the average of chest and back loc w and (Ps,sk - Pw) is the gradient of skin saturation vapor pressure at Tsk and Ta. Additionally, the local effective evaporative coefficient was determined for chest and back sites by Esk/(Ps,dpl - Pw). The GOR ensemble produced an almost as high a Pe as the TS ensemble (82–86% of Pe with TS in still air and 0.4- and 2-m/s conditions). Direct dew-point recording offers an easy practical dimension to the study of efficacy of latent heat loss and skin wettedness properties through garments.


1982 ◽  
Vol 52 (6) ◽  
pp. 1658-1660 ◽  
Author(s):  
H. Graichen ◽  
R. Rascati ◽  
R. R. Gonzalez

A device is described for measuring dew-point temperature and water vapor pressure in small confined areas. The method is based on the deposition of water on a cooled surface when at dew-point temperature. A small Peltier module lowers the temperature of two electrically conductive plates. At dew point the insulating gap separating the plates becomes conductive as water vapor condenses. Sensors based on this principle can be made small and rugged and can be used for measuring directly the local water vapor pressure. They may be installed within a conventional ventilated sweat capsule used for measuring water vapor loss from the skin surface. A novel application is the measurement of the water vapor pressure gradients across layers of clothing worn by an exercising subject.


2014 ◽  
Vol 9 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Mark Hayes ◽  
Paul C. Castle ◽  
Emma Z. Ross ◽  
Neil S. Maxwell

Purpose:To examine the effect of a hot humid (HH) compared with a hot dry (HD) environment, matched for heat stress, on intermittent-sprint performance. In comparison with HD, HH environments compromise evaporative heat loss and decrease exercise tolerance. It was hypothesized that HH would produce greater physiological strain and reduce intermittent-sprint exercise performance compared with HD.Method:Eleven male team-sport players completed the cycling intermittent-sprint protocol (CISP) in 3 conditions, temperate (TEMP; 21.2°C ± 1.3°C, 48.6% ± 8.4% relative humidity [rh]), HH (33.7°C ± 0.5°C, 78.2% ± 2.3% rh), and HD (40.2°C ± 0.2°C, 33.1% ± 4.9% rh), with both heat conditions matched for heat stress.Results:All participants completed the CISP in TEMP, but 3 failed to completed the full protocol of 20 sprints in HH and HD. Peak power output declined in all conditions (P < .05) but was not different between any condition (sprints 1–14 [N = 11]: HH 1073 ± 150 W, HD 1104 ± 127 W, TEMP, 1074 ± 134; sprints 15–20 [N = 8]: HH 954 ± 114 W, HD 997 ± 115 W, TEMP 993 ± 94; P > .05). Physiological strain was not significantly different in HH compared with HD, but HH was higher than TEMP (P < .05).Conclusion:Intermittent-sprint exercise performance of 40 min duration is impaired, but it is not different in HH and HD environments matched for heat stress despite evidence of a trend toward greater physiological strain in an HH environment.


1963 ◽  
Vol 18 (5) ◽  
pp. 1019-1024 ◽  
Author(s):  
Kokichi Ohara ◽  
Takeo Ono

A new simple method for measurement of water discharge from the skin, as well as for estimation of absolute and relative humidity of the skin surface, was reported. The accuracy of the method was high with errors in the order of 2.5%. Estimations were made, using this method, at 108 points over the body of a young healthy nude male subject under neutral thermal conditions. Regional relationship of the rate of insensible perspiration, as well as the absolute and relative humidity of the skin surface, were obtained from the experiments. There was no difference between the regional relationship of the insensible perspiration and that of the absolute humidity. In the regions where perspiration rate is high, the water vapor pressure of the skin surface is also high. Sole, face, palm, and neck are the highest regions. Back of hands and gluteal region are the second highest zone. In distal parts of extremities, there exists an increasing gradient toward the palm or the sole. In the median region of the chest and epigastrium the values are somewhat higher though the chest and abdomen as a whole belong to the lowest regions. Distribution of the relative humidity showed no great difference in general from that of the perspiration rate or absolute humidity. It was found that the regional relationship is not perfectly symmetrical in both sides of the body. Submitted on January 16, 1963


Sign in / Sign up

Export Citation Format

Share Document