Influence of air velocity and heat acclimation on human skin wettedness and sweating efficiency

1979 ◽  
Vol 47 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
V. Candas ◽  
J. P. Libert ◽  
J. J. Vogt

Before and after heat acclimation, four male resting subjects were exposed to humid heat that caused levels of skin wettedness ranging from 50 to 100%. The physical experimental conditions were chosen so that the same skin wettedness was attained with modification of only the ambient water vapor pressure, at two wind speeds (0.6 and 0.9 m . s-1). The esophageal temperature (Tes), mean skin temperature (Tsk), sweating rate (msw), and dripping sweat rate (mdr) were recorded; the amounts of local drippage in the same thermal conditions before and after acclimation were also determined. The relationship between the evaporative efficiency of sweating (eta sw) and the skin wettedness (w) is reported, as is the influence of the subject's acclimation to humid heat on adjustments of skin wettedness. The effects of the air velocity on the coefficient of evaporation and on sweating efficiency are discussed. Beneficial increases in evaporation were achievable by increasing skin wettedness only when there was a consistent drippage, which differed from one body area to another and from one subject to another. The relation of drift in body temperature to skin wettedness changed with the acclimation of the subjects.

Author(s):  
Tze-Huan Lei ◽  
Masashi Fujiwara ◽  
Nicola Gerrett ◽  
Tatsuro Amano ◽  
Toby Mundel ◽  
...  

Seasonal acclimatization from winter to summer is known to enhance thermoeffector responses in hot-dry environments during exercise whilst its impact on sweat evaporation and core temperature (Tcore) responses in hot-humid environments remains unknown. We therefore sought to determine whether seasonal acclimatization is able to modulate whole-body sweat rate (WBSR), evaporated sweat rate, sweating efficiency and thermoregulatory function during cycling exercise in a hot-humid environment (32∘C, 75% RH). We also determined whether the increase in air-velocity, could enhance evaporated sweat rate and sweating efficiency before and after seasonal acclimatization. Twelve males cycled for 1-hour at 40% VO2max in winter (pre-acclimatization) and repeated the trial again in summer (after-acclimatization). For the last 20-min of cycling at a steady-state of Tcore, air-velocity increased from 0.2 (0.04) m/s to 1.1 (0.02) m/s by using an electric fan located in front of the participant. Seasonal acclimatization enhanced WBSR, unevaporated sweat rate, local sweat rate and mean skin temperature compared to pre-acclimatization state (all P<0.05) whilst sweating efficiency was lower (P<0.01) until the 55-min of exercise. Tcore and evaporated sweat rate were unaltered by acclimatization status (all P>0.70). In conclusion, seasonal acclimatization enhances thermoeffector responses but does not attenuate Tcore during exercise in a hot-humid environment. Furthermore, increasing air-velocity enhances evaporated sweat rate and sweating efficiency irrespective of acclimated state.


1983 ◽  
Vol 55 (4) ◽  
pp. 1147-1153 ◽  
Author(s):  
M. N. Sawka ◽  
M. M. Toner ◽  
R. P. Francesconi ◽  
K. B. Pandolf

This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.


1978 ◽  
Vol 44 (6) ◽  
pp. 889-899 ◽  
Author(s):  
R. R. Gonzalez ◽  
L. G. Berglund ◽  
A. P. Gagge

The effect of varying humidity and dry bulb temperatures was studied on five normal male unclothed subjects while exercising (40–45 min) at 28% VO2max. Air movement was 0.75 m.s-1. The initial test and the 16th test on each subject both done at 50 degrees C and 30 Torr (32% rh). Each subject did the intervening 14 experiments twice per day at varying ambient temperature (Ta) and water vapor pressure (Pa) levels, so selected to progressively increase skin wettedness levels. Mean skin temperature (Tsk) and esophageal temperature (Tes), heart rate (HR), skin evaporative heat loss (Esk), and warm discomfort were continuously observed. Skin wettedness (w) was evaluated as the ratio of the observed Esk to the maximum evaporative capacity of the environment. A rational effective temperature (ET) is defined as the dry bulb temperature at 50% rh in which the total heat exchange from skin surface would be the same as in the test environment, described by the observed Ta and Pa. The results showed that 1) during steady state both HR and Tes were unaffected by Ta from 26 to 41 degrees C responding to the level of exercise intensity, when Pa less than or equal to 20 Torr; 2) both mean body temperature, found by weighting Tsk:Tes by 1:9, and ET were each significant indicators of physiological strain when Pa greater than 20 Torr; 3) a level of strain, caused by skin wettedness values greater than 0.5, is suggested as a primary condition necessary for inducing heat acclimation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gavin Travers ◽  
José González-Alonso ◽  
Nathan Riding ◽  
David Nichols ◽  
Anthony Shaw ◽  
...  

Permissive dehydration during exercise heat acclimation (HA) may enhance hematological and cardiovascular adaptations and thus acute responses to prolonged exercise. However, the independent role of permissive dehydration on vascular and cardiac volumes, ventricular-arterial (VA) coupling and systemic hemodynamics has not been systematically investigated. Seven males completed two 10-day exercise HA interventions with controlled heart rate (HR) where euhydration was maintained or permissive dehydration (-2.9 ± 0.5% body mass) occurred. Two experimental trials were conducted before and after each HA intervention where euhydration was maintained (-0.5 ± 0.4%) or dehydration was induced (-3.6 ± 0.6%) via prescribed fluid intakes. Rectal (Tre) and skin temperatures, HR, blood (BV) and left ventricular (LV) volumes, and systemic hemodynamics were measured at rest and during bouts of semi-recumbent cycling (55% V̇O2peak) in 33°C at 20, 100, and 180 min. Throughout HA sweat rate (12 ± 9%) and power output (18 ± 7 W) increased (P &lt; 0.05), whereas Tre was 38.4 ± 0.2°C during the 75 min of HR controlled exercise (P = 1.00). Neither HA intervention altered resting and euhydrated exercising Tre, BV, LV diastolic and systolic volumes, systemic hemodynamics, and VA coupling (P &gt; 0.05). Furthermore, the thermal and cardiovascular strain during exercise with acute dehydration post-HA was not influenced by HA hydration strategy. Instead, elevations in Tre and HR and reductions in BV and cardiac output matched pre-HA levels (P &gt; 0.05). These findings indicate that permissive dehydration during exercise HA with controlled HR and maintained thermal stimulus does not affect hematological or cardiovascular responses during acute endurance exercise under moderate heat stress with maintained euhydration or moderate dehydration.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


2021 ◽  
Vol 11 (4) ◽  
pp. 1710
Author(s):  
Jinwook Lee ◽  
Hyo-Sun Kim ◽  
Donik Ku ◽  
Jihun Lim ◽  
Minkyu Jung ◽  
...  

Membrane-based vacuum dehumidification technology is currently being actively studied. In most studies, the performance of the membrane-based systems is evaluated under the assumption that the membrane can achieve ideal separation, which results in ideal coefficient of performance (COP) values. However, the performance factors for membranes vary depending on the experimental conditions and measurement methods. Therefore, relevant values can only be calculated if the data are measured in an environment close to that of the application conditions. The cup measurement method is a simple method to measure the permeability, however, there are limitations regarding adding variables during the experiment. To overcome these limitations, a new experimental device was constructed that combines pressurized cell with the cup method. Using the device, the performance of polyethylene-amide-bonded dense membranes was evaluated under conditions where absolute pressure differentials occurred before and after the membrane, such as in air conditioner dehumidification systems.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 515 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Huang ◽  
Ye Zhang ◽  
Yi Tian ◽  
Yu Zhao

In this paper, we present a vibration-based transmission tower structural health monitoring system consisting of two parts that identifies structural changes in towers. An accelerometer group realizes vibration response acquisition at different positions and reduces the risk of data loss by data compression technology. A solar cell provides the power supply. An analyser receives the data from the acceleration sensor group and calculates the transmission tower natural frequencies, and the change in the structure is determined based on natural frequencies. Then, the data are sent to the monitoring center. Furthermore, analysis of the vibration signal and the calculation method of natural frequencies are proposed. The response and natural frequencies of vibration at different wind speeds are analysed by time-domain signal, power spectral density (PSD), root mean square (RMS) and short-time Fouier transform (STFT). The natural frequency identification of the overall structure by the stochastic subspace identification (SSI) method reveals that the number of natural frequencies that can be calculated at different wind speeds is different, but the 2nd, 3rd and 4th natural frequencies can be excited. Finally, the system was tested on a 110 kV experimental transmission line. After 18 h of experimentation, the natural frequency of the overall structure of the transmission tower was determined before and after the tower leg was lifted. The results show that before and after the tower leg is lifted, the natural frequencies of each order exhibit obvious changes, and the differences in the average values can be used as the basis for judging the structural changes of the tower.


2018 ◽  
Vol 50 (2) ◽  
pp. 299-307 ◽  
Author(s):  
NICHOLAS RAVANELLI ◽  
GEOFF B. COOMBS ◽  
PASCAL IMBEAULT ◽  
OLLIE JAY

1986 ◽  
Vol 61 (3) ◽  
pp. 967-970 ◽  
Author(s):  
C. R. Kirby ◽  
V. A. Convertino

This investigation was designed to determine the relationship between the levels of plasma aldosterone and eccrine sweat gland sodium excretion following exercise and heat acclimation. Ten subjects exercised at 45% of their maximal O2 uptake in a hot (40 degrees C), moderately humid (45% relative humidity) environment for 2 h/day on ten consecutive days. Acclimation was verified by significant reductions in exercise heart rate, rectal temperature, and heat storage, as well as significant elevation of resting plasma volume (12%, P less than 0.05) and exercise sweat rate on day 10 compared with day 1 of acclimation. During exercise, the concentration and total content of sodium in sweat as well as plasma aldosterone were significantly decreased from day 1 to day 10. The ratio of sweat sodium reabsorbed to plasma aldosterone concentration was significantly increased from day 1 to day 10 after both 1 and 2 h of exercise. These data indicate that plasma aldosterone concentrations decrease following heat acclimation; and eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augumented through exercise and heat acclimation.


1998 ◽  
Vol 84 (5) ◽  
pp. 1731-1739 ◽  
Author(s):  
Stephen S. Cheung ◽  
Tom M. McLellan

—The purpose of the present study was to determine the separate and combined effects of aerobic fitness, short-term heat acclimation, and hypohydration on tolerance during light exercise while wearing nuclear, biological, and chemical protective clothing in the heat (40°C, 30% relative humidity). Men who were moderately fit [(MF); <50 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 7] and highly fit [(HF); >55 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 8] were tested while they were euhydrated or hypohydrated by ∼2.5% of body mass through exercise and fluid restriction the day preceding the trials. Tests were conducted before and after 2 wk of daily heat acclimation (1-h treadmill exercise at 40°C, 30% relative humidity, while wearing the nuclear, biological, and chemical protective clothing). Heat acclimation increased sweat rate and decreased skin temperature and rectal temperature (Tre) in HF subjects but had no effect on tolerance time (TT). MF subjects increased sweat rate but did not alter heart rate, Tre, or TT. In both MF and HF groups, hypohydration significantly increased Tre and heart rate and decreased the respiratory exchange ratio and the TT regardless of acclimation state. Overall, the rate of rise of skin temperature was less, while ΔTre, the rate of rise of Tre, and the TT were greater in HF than in MF subjects. It was concluded that exercise-heat tolerance in this uncompensable heat-stress environment is not influenced by short-term heat acclimation but is significantly improved by long-term aerobic fitness.


Sign in / Sign up

Export Citation Format

Share Document