Hypohydration and exercise: effects of heat acclimation, gender, and environment

1983 ◽  
Vol 55 (4) ◽  
pp. 1147-1153 ◽  
Author(s):  
M. N. Sawka ◽  
M. M. Toner ◽  
R. P. Francesconi ◽  
K. B. Pandolf

This study examined the effects of heat acclimation and subject gender on treadmill exercise in comfortable (20 degrees C, 40% rh), hot-dry (49 degrees C, 20% rh), and hot-wet (35 degrees C, 79% rh) environments while subjects were hypo- or euhydrated. Six male and six female subjects, matched for maximal aerobic power and percent body fat, completed two exercise tests in each environment both before and after a 10-day heat acclimation program. One exercise test was completed during euhydration and one during hypohydration (-5.0% from baseline body weight). In general, no significant (P greater than 0.05) differences were noted between men and women at the completion of exercise for rectal temperature (Tre), mean skin temperature (Tsk), or heat rate (HR) during any of the experimental conditions. Hypohydration generally increased Tre and HR values and decreased sweat rate values while not altering Tsk values. In the hypohydration experiments, heat acclimation significantly reduced Tre (0.19 degrees C) and HR (13 beats X min-1) values in the comfortable environment, but only HR values were reduced in hot-dry (21 beats X min-1) and hot-wet (21 beats X min-1) environments. The present findings indicated that men and women respond in a physiologically similar manner to hypohydration during exercise. They also indicated that for hypohydrated subjects heat acclimation decreased thermoregulatory and cardiovascular strain in a comfortable environment, but only cardiovascular strain decreased in hot environments.

1981 ◽  
Vol 50 (1) ◽  
pp. 65-70 ◽  
Author(s):  
A. J. Frye ◽  
E. Kamon

Four men and four women with similar VO2max (56.33 +/- 4.05 and 54.08 +/- 4.27 ml.kg-1.min-1, respectively) exercised up to 3 h at 30% VO2max during heat stress tests (HST) before and after acclimation to dry heat [dry-bulb temperature (Tdb)/wet-bulb temperature (Twb) = 48/25 degrees C]. Rectal (Tre), tympanic sweat on the chest (msw), and total sweat rate (Msw) were recorded. There were no differences in the responses of the women between phases of the menstrual cycle. Tre, Tty, Tsk, and Tdb at the onset of sweating were similar in both sexes before and after acclimation. The nonacclimated men had significantly higher Msw and slower rise in Tre as compared to the nonacclimated women. Following acclimation these differences were no longer evident. Acclimation produced an increase in Msw in both sexes that was characterized by an increase in sweating sensitivity (delta msw/delta Tre). It was concluded that sex alone does not determine responses to heat stress. Consideration should also be given to the relative cardiovascular strain, state of acclimation, and the ambient conditions.


1979 ◽  
Vol 47 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
V. Candas ◽  
J. P. Libert ◽  
J. J. Vogt

Before and after heat acclimation, four male resting subjects were exposed to humid heat that caused levels of skin wettedness ranging from 50 to 100%. The physical experimental conditions were chosen so that the same skin wettedness was attained with modification of only the ambient water vapor pressure, at two wind speeds (0.6 and 0.9 m . s-1). The esophageal temperature (Tes), mean skin temperature (Tsk), sweating rate (msw), and dripping sweat rate (mdr) were recorded; the amounts of local drippage in the same thermal conditions before and after acclimation were also determined. The relationship between the evaporative efficiency of sweating (eta sw) and the skin wettedness (w) is reported, as is the influence of the subject's acclimation to humid heat on adjustments of skin wettedness. The effects of the air velocity on the coefficient of evaporation and on sweating efficiency are discussed. Beneficial increases in evaporation were achievable by increasing skin wettedness only when there was a consistent drippage, which differed from one body area to another and from one subject to another. The relation of drift in body temperature to skin wettedness changed with the acclimation of the subjects.


2000 ◽  
Vol 89 (6) ◽  
pp. 2283-2293 ◽  
Author(s):  
Raymond J. Geor ◽  
Laura Jill McCutcheon ◽  
Gayle L. Ecker ◽  
Michael I. Lindinger

The effect of humid heat acclimation on thermoregulatory responses to humid and dry exercise-heat stress was studied in six exercise-trained Thoroughbred horses. Horses were heat acclimated by performing moderate-intensity exercise for 21 days in heat and humidity (HH) [34.2–35.7°C; 84–86% relative humidity (RH); wet bulb globe temperature (WBGT) index ∼32°C]. Horses completed exercise tests at 50% of peak O2 uptake until a pulmonary arterial temperature (Tpa) of 41.5°C was attained in cool dry (CD) (20–21.5°C; 45–50% RH; WBGT ∼16°C), hot dry (HD 0) [32–34°C room temperature (RT); 45–55% RH; WBGT ∼25°C], and HH conditions (HH 0), and during the second hour of HH on days 3, 7, 14, and 21, and in HD on the 18th day (HD 18) of heat acclimation. The ratios of required evaporative capacity to maximal evaporative capacity of the environment (Ereq/Emax) for CD, HD, and HH were ∼1.2, 1.6, and 2.5, respectively. Preexercise Tpa and rectal temperature were ∼0.5°C lower ( P < 0.05) on days 7, 14, and 21 compared with day 0. With exercise in HH, there was no effect of heat acclimation on the rate of rise in Tpa (and therefore exercise duration) nor the rate of heat storage. In contrast, exercise duration was longer, rate of rise in Tpa was significantly slower, and rate of heat storage was decreased on HD 18 compared with HD 0. It was concluded that, during uncompensable heat stress in horses, heat acclimation provided modest heat strain advantages when Ereq/Emax was ∼1.6, but at higher Ereq/Emax no advantages were observed.


2004 ◽  
Vol 14 (4) ◽  
pp. 443-460 ◽  
Author(s):  
L.P. Kilduff ◽  
E. Georgiades ◽  
N. James ◽  
R.H. Minnion ◽  
M. Mitchell ◽  
...  

The effects of creatine (Cr) supplementation on cardiovascular, metabolic, and thermoregulatory responses, and on the capacity of trained humans to perform prolonged exercise in the heat was examined. Endurance-trained males (n = 21) performed 2 constant-load exercise tests to exhaustion at 63 ± 5 % VO2max in the heat (ambient temperature: 30.3 ± 0.5 °C) before and after 7 d of Cr (20 g · d–1 ’ Cr + 140 g • d–1 glucose polymer) or placebo. Cr increased intraccl-lular water and reduced thermoregulatory and cardiovascular responses (e.g., heart rate, rectal temperature, sweat rate) but did not significantly increase time to exhaustion (47.0 ± 4.7 min vs. 49.7 ± 7.5 min, P = 0.095). Time to exhaustion was increased significantly in subjects whose estimated intramuscular Cr levels were substantially increased (“responders”: 47.3 ± 4.9 min vs. 51.7 ± 7.4 min, P = 0.031). Cr-induced hyperhydration can result in a more efficient thermoregulatory response during prolonged exercise in the heat.


2010 ◽  
Vol 109 (4) ◽  
pp. 1247-1255 ◽  
Author(s):  
Masaki Goto ◽  
Kazunobu Okazaki ◽  
Yoshi-ichiro Kamijo ◽  
Shigeki Ikegawa ◽  
Shizue Masuki ◽  
...  

We examined whether protein and carbohydrate (CHO) supplementation during 5-day training enhanced plasma volume (PV) expansion and thermoregulatory and cardiovascular adaptations in young men. Eighteen men [age 23 ± 4 (SD) yr] were divided into two groups according to supplements: placebo (CNT: 0.93 kcal/kg, 0.00 g protein/kg, n = 9) and protein and CHO (Pro-CHO: 3.6 kcal/kg, 0.36 protein/kg, n = 9). Subjects in both groups performed a cycling exercise at 70% peak oxygen consumption rate (V̇o2peak), 30 min/day, for 5 consecutive days at 30°C ambient temperature and 50% relative humidity and took either a placebo or Pro-CHO within 10 min after exercise for each day. Before and after training, PV at rest, heart rate (HR), and esophageal temperature (Tes) during 30-min exercise at 65% of pretraining V̇o2peak in the same condition as training were determined. Also, the sensitivity of the chest sweat rate (ΔSR/ΔTes) and forearm vascular conductance (ΔFVC/ΔTes) in response to increased Tes were determined. After training, PV and cardiac stroke volume (SV) at rest increased in both groups ( P < 0.001) but the increases were twofold higher in Pro-CHO than CNT ( P = 0.007 and P = 0.078, respectively). The increases in HR from 5 to 30 min and Tes from 0 to 30 min of exercise were attenuated after training in both groups with greater attenuation in Pro-CHO than CNT ( P = 0.002 and P = 0.072, respectively). ΔSR/ΔTes increased in CNT ( P = 0.052) and Pro-CHO ( P < 0.001) and the increases were higher in Pro-CHO than CNT ( P = 0.018). ΔFVC/ΔTes increased in Pro-CHO ( P < 0.001), whereas not in CNT ( P = 0.16). Thus protein-CHO supplementation during 5-day training enhanced PV expansion and thermoregulatory adaptation and, thereby, the reduction in heat and cardiovascular strain in young men.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gavin Travers ◽  
José González-Alonso ◽  
Nathan Riding ◽  
David Nichols ◽  
Anthony Shaw ◽  
...  

Permissive dehydration during exercise heat acclimation (HA) may enhance hematological and cardiovascular adaptations and thus acute responses to prolonged exercise. However, the independent role of permissive dehydration on vascular and cardiac volumes, ventricular-arterial (VA) coupling and systemic hemodynamics has not been systematically investigated. Seven males completed two 10-day exercise HA interventions with controlled heart rate (HR) where euhydration was maintained or permissive dehydration (-2.9 ± 0.5% body mass) occurred. Two experimental trials were conducted before and after each HA intervention where euhydration was maintained (-0.5 ± 0.4%) or dehydration was induced (-3.6 ± 0.6%) via prescribed fluid intakes. Rectal (Tre) and skin temperatures, HR, blood (BV) and left ventricular (LV) volumes, and systemic hemodynamics were measured at rest and during bouts of semi-recumbent cycling (55% V̇O2peak) in 33°C at 20, 100, and 180 min. Throughout HA sweat rate (12 ± 9%) and power output (18 ± 7 W) increased (P &lt; 0.05), whereas Tre was 38.4 ± 0.2°C during the 75 min of HR controlled exercise (P = 1.00). Neither HA intervention altered resting and euhydrated exercising Tre, BV, LV diastolic and systolic volumes, systemic hemodynamics, and VA coupling (P &gt; 0.05). Furthermore, the thermal and cardiovascular strain during exercise with acute dehydration post-HA was not influenced by HA hydration strategy. Instead, elevations in Tre and HR and reductions in BV and cardiac output matched pre-HA levels (P &gt; 0.05). These findings indicate that permissive dehydration during exercise HA with controlled HR and maintained thermal stimulus does not affect hematological or cardiovascular responses during acute endurance exercise under moderate heat stress with maintained euhydration or moderate dehydration.


1981 ◽  
Vol 60 (6) ◽  
pp. 689-692 ◽  
Author(s):  
J. Rees ◽  
S. Shuster

1. To study the difference in sweat rate between men and women the rates of cholinergic-induced sweating were measured in normal people before and after puberty and in response to androgens and anti-androgens. 2. Sweat rate in men was more than double that in women. 3. This difference did not occur in prepubertal boys and girls in whom the rate, corrected for surface area, was comparable with that in women. 4. Application or injection of androgen locally did not stimulate sweat production in the adult female. 5. Anti-androgen topically or systemically did not decrease sweat rate in men. 6. It is concluded that the rate of sweat rate in men is caused by androgen-induced gene expression at puberty and not by androgen modulation in adult life.


2009 ◽  
Vol 297 (3) ◽  
pp. R605-R614 ◽  
Author(s):  
Andrew E. Beaudin ◽  
Miriam E. Clegg ◽  
Michael L. Walsh ◽  
Matthew D. White

Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (V̇e) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that V̇e would adapt similar to human eccrine sweating (ĖSW) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50°C and 20% relative humidity (RH) ( n = 8, Acclimation group) or 24°C and 32% RH ( n = 4, Control group). Attainment of HA was confirmed by a significant decrease ( P = 0.025) of the esophageal temperature (Tes) threshold for the onset of ĖSW and a significantly elevated ĖSW ( P ≤ 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting Tes ( P = 0.006) and a significant increase in plasma volume ( P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased Tes thresholds ( P ≤ 0.005) for the onset of increases in the ventilatory equivalents for O2 (V̇e/V̇o2) and CO2 (V̇e/V̇co2) and a significantly increased V̇e ( P ≤ 0.017) at all levels of Tes. Elevated V̇e was a function of a significantly greater tidal volume ( P = 0.003) at lower Tes and of breathing frequency ( P ≤ 0.005) at higher Tes. Following HA, the ventilatory threshold was uninfluenced and the relationships between V̇o2 and either V̇e/V̇o2 or V̇e/V̇co2 did not explain the resulting hyperventilation. In conclusion, the results support that exercise V̇e following passive HA responds similarly to ĖSW, and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between V̇o2 with each of V̇e/V̇o2 and V̇e/V̇co2.


Author(s):  
Niken Setyaningrum ◽  
Andri Setyorini ◽  
Fachruddin Tri Fitrianta

ABSTRACTBackground: Hypertension is one of the most common diseases, because this disease is suffered byboth men and women, as well as adults and young people. Treatment of hypertension does not onlyrely on medications from the doctor or regulate diet alone, but it is also important to make our bodyalways relaxed. Laughter can help to control blood pressure by reducing endocrine stress andcreating a relaxed condition to deal with relaxation.Objective: The general objective of the study was to determine the effect of laughter therapy ondecreasing elderly blood pressure in UPT Panti Wredha Budhi Dharma Yogyakarta.Methods: The design used in this study is a pre-experimental design study with one group pre-posttestresearch design where there is no control group (comparison). The population in this study wereelderly aged over> 60 years at 55 UPT Panti Wredha Budhi Dharma Yogyakarta. The method oftaking in this study uses total sampling. The sample in this study were 55 elderly. Data analysis wasused to determine the difference in blood pressure before and after laughing therapy with a ratio datascale that was using Pairs T-TestResult: There is an effect of laughing therapy on blood pressure in the elderly at UPT Panti WredhaBudhi Dharma Yogyakarta marked with a significant value of 0.000 (P <0.05)


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


Sign in / Sign up

Export Citation Format

Share Document