Canine diaphragm muscle after 1 yr of continuous electrical stimulation: its potential as a myocardial substitute

1987 ◽  
Vol 62 (3) ◽  
pp. 1264-1270 ◽  
Author(s):  
M. A. Acker ◽  
J. D. Mannion ◽  
W. E. Brown ◽  
S. Salmons ◽  
J. Henriksson ◽  
...  

Skeletal muscle has been rendered fatigue resistant by chronic stimulation and therefore has potential as an active substitute for damaged myocardium. It is therefore important to know whether stimulation produces any deleterious effects in the long term. Hemidiaphragm muscles of four dogs were examined after chronic stimulation for 1 yr at either 2 or 4 Hz. The stimulated hemidiaphragms appeared normal on gross inspection and were still contracting vigorously. By histochemical and immunohistochemical criteria, they had acquired a uniformly type I character, in contrast to the mixed fiber type composition of the unstimulated hemidiaphragms. This transformation was also reflected in their complement of myosin isozymes. There was some enzymatic evidence of an associated shift towards aerobic pathways of energy generation. Histological examination revealed no evidence of degenerative changes. Trends, observed in the shorter term (6–8 wk), toward a decrease in fiber area and an increase in connective tissue showed no further progression at 1 yr. Thus hemidiaphragm muscle stimulated at frequencies at or above the normal heart rate does not appear to undergo adverse long-term changes that would constrain its use in a myocardial assist role.

2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1993 ◽  
Vol 75 (1) ◽  
pp. 264-267 ◽  
Author(s):  
T. J. Walters ◽  
S. H. Constable

We examined the effect of long-term intermittent cold exposure on the fiber type composition of the predominantly type I soleus and the predominantly type IIb extensor digitorum longus (EDL) muscles of rats. Cold exposure was accomplished by submerging the rats in shoulder-deep water, maintained at 20 +/- 0.5 degrees C, for 1 h/day, 5 days/wk, for < or = 19 wk. The efficacy of the treatment was tested by subjecting both groups to 20 degrees C water for 45 min while rectal temperature (Tre) and O2 consumption (VO2) were measured. The cold-exposed group displayed a 22% smaller reduction in Tre (P < 0.05) at the end of the exposure and 23% greater VO2 (P < 0.05) during the same period. Fiber type composition was determined using routine histochemical methods for myosin-adenosinetriphosphatase. In the soleus muscle of the cold-exposed rats, the number of type IIa fibers increased 156% (P < 0.05) and the number of type I fibers decreased 24% (P < 0.05). Cold exposure had no significant influence on the fiber type composition of the EDL muscle. Cold exposure resulted in an increase in citrate synthase activity of 20 and 22% in the soleus and EDL muscles, respectively (P < 0.05). The present study demonstrates that intermittent cold exposure induces a type I-to-type IIa transformation in the soleus muscle while having no influence on the EDL muscle.


Author(s):  
Oscar Horwath ◽  
Helena Envall ◽  
Julia Röja ◽  
Eric Bengt Emanuelsson ◽  
Gema Sanz ◽  
...  

Human skeletal muscle characteristics such as fiber type composition, fiber size and myonuclear content are widely studied in clinical and sports related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle is currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n=7) and SDS-PAGE (n=25). None of the analyzed parameters; fiber type % (FT%), type I and II CSA (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content or myonuclear domain varied in a systematic manner longitudinally along the muscle or between the two legs. The average within subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13-18%, but was only 5% for fiber specific myonuclear content, which reduced the variability for myonuclear domain size to 11-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1 and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type and fiber size related aspects given the notable sample to sample variability.


1990 ◽  
Vol 258 (4) ◽  
pp. E635-E642 ◽  
Author(s):  
M. J. Pagliassotti ◽  
C. M. Donovan

Net lactate uptake and subsequent pathways for removal were studied in three rabbit skeletal muscle preparations of distinct fiber type composition, i.e., glycolytic (99.1 +/- 0.2% type IIb fibers), oxidative (97.5 +/- 0.6% type I fibers), and mixed (type I, IIa, and IIb fibers). Single-pass perfusions were carried out for 3 h in the presence of glucose, lactate, and [U-14C]lactate. Lactate levels, initially set at either 1 mM (n = 4/prep) or 2 mM (n = 4/prep), were elevated twice during the perfusion at 60 and 120 min. Net lactate uptake (mumol.100 g-1.min-1) was first observed in the oxidative preparation, 1.4 +/- 0.2, at an arterial lactate concentration of approximately 2.5 mM, whereas net lactate uptake in the glycolytic, 0.7 +/- 0.2, and mixed preparations, 7.0 +/- 0.5, was first observed at 4 mM. Net lactate balance, [14C]lactate removal, and 14CO2 release demonstrated strong linear correlations (r = 0.94-0.98) with arterial lactate concentration. To quantify the fate of [14C]lactate, preparations were perfused at a single elevated lactate concentration (approximately 8 mM) for 2 h. Oxidation was the primary means of disposal in the oxidative and mixed preparations, whereas glyconeogenesis dominated removal in the glycolytic preparation. The arterial lactate concentration at which a given muscle switches from net production to net removal, the rate of removal, and subsequent pathway(s) for disposal are a function of that muscle's fiber type composition.


PPAR Research ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-7
Author(s):  
Adnan Erol

Peroxisome proliferator-activated receptorβ/δ(PPARβ/δ) has emerged as a powerful metabolic regulator in diverse tissues including fat, skeletal muscle, and the heart. It is now established that activation of PPARβ/δpromotes fatty acid oxidation in several tissues, such as skeletal muscle and adipose tissue. In muscle, PPARβ/δappears to act as a central regulator of fatty acid catabolism. PPARβ/δcontents are increased in muscle during physiological situations such as physical exercise or long-term fasting, characterized by increased fatty acid oxidation. Targeted expression of an activated form of PPARβ/δin skeletal muscle induces a switch to form increased numbers of type I muscle fibers resembling the fiber type transition by endurance training. Activation of PPARβ/δalso enhances mitochondrial capacity and fat oxidation in the skeletal muscle that resembles the effect of regular exercise. Therefore, it is hypothesized that muscle-specific PPARβ/δagonists could be a key strategy to support the poor cardiorespiratory fitness associated with metabolic disorders.


1987 ◽  
Vol 65 (9) ◽  
pp. 790-797 ◽  
Author(s):  
Pierre Frémont ◽  
Claude Lazure ◽  
Roland R. Tremblay ◽  
Michel Chrétien ◽  
Peter A. Rogers

This laboratory previously reported that a major 30 kilodalton (kDa) protein of the soluble cytoplasmic fraction of the rat slow-twitch soleus muscle is modulated by thyroid hormone. This protein has been purified and a portion of the primary structure has been determined. The sequence analysis suggested that the 30-kDa protein is carbonic anhydrase III (CA III; EC 4.2.1.1). The reaction of the protein with a CA III specific antibody and the similar modulation of CA III by thyroid hormone also support this conclusion. Immunochemical quantification of CA III and measurement of CA activity were performed in skeletal muscles of defined fiber-type composition from rats that were rendered hyperthyroid by treatment with 3,3′,5-triiodo-L-thyronine. These experiments revealed that CA activity and CA III content are deinduced in the soleus muscle (primarily type I fibers) and induced in the superficial vastus lateralis muscle (primarily type IIb), whereas no changes were detected in the tibialis anterior muscle (primary type IIa). These results show that the modulation of CA III by thyroid hormone in rat skeletal muscle is not limited to the slow-twitch soleus muscle and that the amplitude and direction of this modulation are directly related to the initial fiber-type composition of the skeletal muscle.


2021 ◽  
Vol 6 (2) ◽  
pp. 40
Author(s):  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Gerasimos Terzis

Track and field throwing performance is determined by a number of biomechanical and biological factors which are affected by long-term training. Although much of the research has focused on the role of biomechanical factors on track and field throwing performance, only a small body of scientific literature has focused on the connection of biological factors with competitive track and field throwing performance. The aim of this review was to accumulate and present the current literature connecting the performance in track and field throwing events with specific biological factors, including the anthropometric characteristics, the body composition, the neural activation, the fiber type composition and the muscle architecture characteristics. While there is little published information to develop statistical results, the results from the current review suggest that major biological determinants of track and field throwing performance are the size of lean body mass, the neural activation of the protagonist muscles during the throw and the percentage of type II muscle fiber cross-sectional area. Long-term training may enhance these biological factors and possibly lead to a higher track and field throwing performance. Consequently, coaches and athletes should aim at monitoring and enhancing these parameters in order to increase track and field throwing performance.


2009 ◽  
Vol 296 (3) ◽  
pp. C525-C534 ◽  
Author(s):  
Alex Hennebry ◽  
Carole Berry ◽  
Victoria Siriett ◽  
Paul O'Callaghan ◽  
Linda Chau ◽  
...  

Myostatin (Mstn) is a secreted growth factor belonging to the tranforming growth factor (TGF)-β superfamily. Inactivation of murine Mstn by gene targeting, or natural mutation of bovine or human Mstn, induces the double muscling (DM) phenotype. In DM cattle, Mstn deficiency increases fast glycolytic (type IIB) fiber formation in the biceps femoris (BF) muscle. Using Mstn null (−/−) mice, we suggest a possible mechanism behind Mstn-mediated fiber-type diversity. Histological analysis revealed increased type IIB fibers with a concomitant decrease in type IIA and type I fibers in the Mstn−/−tibialis anterior and BF muscle. Functional electrical stimulation of Mstn−/−BF revealed increased fatigue susceptibility, supporting increased type IIB fiber content. Given the role of myocyte enhancer factor 2 (MEF2) in oxidative type I fiber formation, MEF2 levels in Mstn−/−tissue were quantified. Results revealed reduced MEF2C protein in Mstn−/−muscle and myoblast nuclear extracts. Reduced MEF2-DNA complex was also observed in electrophoretic mobility-shift assay using Mstn−/−nuclear extracts. Furthermore, reduced expression of MEF2 downstream target genes MLC1F and calcineurin were found in Mstn−/−muscle. Conversely, Mstn addition was sufficient to directly upregulate MLC promoter-enhancer activity in cultured myoblasts. Since high MyoD levels are seen in fast fibers, we analyzed MyoD levels in the muscle. In contrast to MEF2C, MyoD levels were increased in Mstn−/−muscle. Together, these results suggest that while Mstn positively regulates MEF2C levels, it negatively regulates MyoD expression in muscle. We propose that Mstn could regulate fiber-type composition by regulating the expression of MEF2C and MyoD during myogenesis.


1998 ◽  
Vol 85 (4) ◽  
pp. 1273-1278 ◽  
Author(s):  
Barbara Norman ◽  
Donna K. Mahnke-Zizelman ◽  
Amy Vallis ◽  
Richard L. Sabina

AMPD1 genotype, relative fiber type composition, training status, and gender were evaluated as contributing factors to the reported variation in AMP deaminase enzyme activity in healthy skeletal muscle. Multifactorial correlative analyses demonstrate that AMPD1 genotype has the greatest effect on enzyme activity. An AMPD1 mutant allele frequency of 13.7 and a 1.7% incidence of enzyme deficiency was found across 175 healthy subjects. Homozygotes for the AMPD1 normal allele have high enzyme activities, and heterozygotes display intermediate activities. When examined according to genotype, other factors were found to affect variability as follows: AMP deaminase activity in homozygotes for the normal allele exhibits a negative correlation with the relative percentage of type I fibers and training status. Conversely, residual AMP deaminase activity in homozygotes for the mutant allele displays a positive correlation with the relative percentage of type I fibers. Opposing correlations in different homozygous AMPD1 genotypes are likely due to relative fiber-type differences in the expression of AMPD1 and AMPD3 isoforms. Gender also contributes to variation in total skeletal muscle AMP deaminase activity, with normal homozygous and heterozygous women showing only 85–88% of the levels observed in genotype-matched men.


Sign in / Sign up

Export Citation Format

Share Document