Age and training alter collagen characteristics in fast- and slow-twitch rat limb muscle

1993 ◽  
Vol 75 (4) ◽  
pp. 1670-1674 ◽  
Author(s):  
S. D. Zimmerman ◽  
R. J. McCormick ◽  
R. K. Vadlamudi ◽  
D. P. Thomas

This study evaluated the single and interactive effects of age and training status on selected collagen parameters in two rodent locomotor skeletal muscles contrasting in fiber type composition. Gastrocnemius (GAST) and soleus (SOL) muscles from both trained (10 wk of daily treadmill running) and sedentary young adult (5-mo-old), middle-aged (15-mo-old), and old (23-mo-old) female Fischer 344 rats were evaluated for concentrations of collagen (measured by hydroxyproline concentration ([OH-Pro])) and of the predominant nonreducible lysine aldehyde-derived collagen cross-link hydroxylysylpyridinoline ([HP]). Maximal aerobic capacity was significantly elevated in all three trained groups compared with sedentary age-matched control groups. Slow-twitch SOL had a significantly higher [OH-Pro] than fast-twitch GAST (P < 0.05). Although aging had no effect on [OH-Pro] in GAST, in SOL a significant increase with age was seen (P < 0.02). In sedentary rats both GAST and SOL [HP] increased with age, with this increase being more pronounced for SOL. Additionally, although training had no effect on the aging-associated increase in GAST [HP], it prevented the rise seen in SOL. The observed training-induced reduction in SOL [HP] presumably reflects exercise recruitment and subsequent stimulation of collagen synthesis and degradation rates in this muscle. We conclude that both aging and training affect the extracellular matrix in rodent limb skeletal muscle.

1984 ◽  
Vol 57 (1) ◽  
pp. 246-253 ◽  
Author(s):  
S. M. Sullivan ◽  
R. N. Pittman

In vitro oxygen consumption (VO2), histochemical fiber type, capillary arrangement, and muscle fiber geometry were measured in three hamster striated muscles. These muscles varied markedly in their histochemical fiber type composition (% by number): retractor (70% FG, fast-twitch, glycolytic; 16% FOG, fast-twitch, oxidative-glycolytic; 14% SO, slow-twitch, oxidative); soleus (57% FOG, 43% SO), and sartorius (98% FG, 2% FOG). Sartorius VO2 [0.80 +/- 0.034 (SE) ml O2 X min-1 X 100 g-1] was significantly different (P less than 0.01) from VO2 of retractor (0.89 +/- 0.038) and soleus (1.00 +/- 0.048).The number of capillaries around a fiber and the surface area/volume were greater for FOG and SO fibers than for FG fibers. Fibers of all types appeared to be roughly elliptical in shape. Capillaries were uniformly distributed around fibers in the soleus, but they were located more toward the ends of the major diameter in the retractor and sartorius. The results suggest a relationship among a fiber's oxidative capacity (based on its histochemical staining pattern), number of surrounding capillaries and surface area/volume. Furthermore, results suggest that VO2 and capillary spacing around a fiber may depend on fiber type.


1990 ◽  
Vol 258 (6) ◽  
pp. C1031-C1035 ◽  
Author(s):  
T. J. Walters ◽  
H. L. Sweeney ◽  
R. P. Farrar

The purpose of this study was to examine the influence of aging on the contractile, metabolic, and histochemical properties of the predominantly fast-twitch flexor digitorum longus muscle (FDL) in the Fischer 344 (F344) rat strain. Contractile measurements were made in situ by stimulating the motoneuron while the animals were under pentobarbital sodium anesthesia. Fiber-type composition, capillarity, aerobic capacity, and myosin light chain composition were also examined. The results of this investigation were striking in that there was no alteration in any parameter measured. Collectively, these results suggest that aging does not induce a functional alteration in the neuromuscular relationship in the predominantly fast-twitch FDL of F344 rats, and consequently, there is no loss of functional capacity of the muscle. This study demonstrates that alteration in predominantly fast-twitch muscle is not a universal phenomenon and that care must be taken when generalizing about the influence of aging on skeletal muscle. Some of the conflicting results regarding the influence of aging on predominantly fast-twitch muscle in rodents may be either strain or muscle specific.


1988 ◽  
Vol 254 (6) ◽  
pp. E726-E732 ◽  
Author(s):  
R. J. Zeman ◽  
R. Ludemann ◽  
T. G. Easton ◽  
J. D. Etlinger

Chronic treatment of rats with clenbuterol, a beta 2-receptor agonist (8–12 wk), caused hypertrophy of histochemically identified fast- but not slow-twitch fibers within the soleus, while the mean areas of both fiber types were increased in the extensor digitorum longus (EDL). In contrast, treatment with the beta 2-receptor antagonist, butoxamine, reduced fast-twitch fiber size in both muscles. In the solei and to a lesser extent in the EDLs, the ratio of the number of fast- to slow-twitch fibers was increased by clenbuterol, while the opposite was observed with butoxamine. The muscle fiber hypertrophy observed in the EDL was accompanied by parallel increases in maximal tetanic tension and muscle cross-sectional area, while in the solei, progressive increases in rates of force development and relaxation toward values typical of fast-twitch muscles were also observed. Our results suggest a role of beta 2-receptors in regulating muscle fiber type composition as well as growth.


1985 ◽  
Vol 59 (2) ◽  
pp. 639-646 ◽  
Author(s):  
R. R. Roy ◽  
K. M. Baldwin ◽  
T. P. Martin ◽  
S. P. Chimarusti ◽  
V. R. Edgerton

The rat soleus (SOL) or medial gastrocnemius (MG) were chronically overloaded by removing their major synergists bilaterally. After 12–14 wks the overloaded SOL (OS) and overloaded MG (OMG) muscles had approximately 50% greater cross-sectional areas (CSA) than the controls. Maximum twitch (Pt) and tetanic (Po) tensions were approximately 46% larger in the OS compared with the normal SOL. The OMG produced 10 and 37% higher Pt and Po, respectively. Specific tension (Po/CSA) was not altered in either group (P greater than 0.05). Contraction times and half-relaxation times were unchanged. Myofibrillar and myosin ATPase specific activities indicated a shift toward that resembling a slower muscle in both the OS and the red portion but not the white portion of the OMG. Generally, markers of glycogen metabolism were reduced (P less than 0.05) in the same muscle areas that showed reduced ATPase activity. These biochemical results were consistent with the apparent histochemical conversion of fibers from fast-twitch, glycolytic----fast-twitch, oxidative-glycolytic----slow-twitch, oxidative types in these muscle areas. These results suggest that overloading either a fast- or slow-twitch plantarflexor results in an increase in muscle mass and maximum tension and in metabolic shifts that generally resemble those observed in a slower muscle. Further, the degree of adaptation appears to be related to the initial fiber type composition of the muscle and/or of the muscle region.


2008 ◽  
Vol 33 (2) ◽  
pp. 272-281 ◽  
Author(s):  
Thomas J. Walters ◽  
John F. Kragh ◽  
David G. Baer

This study was designed to determine if previously reported differences in the functional impairment of muscles composed of predominantly different fiber types occurs following extended periods of ischemia. We hypothesized that the soleus (Sol) muscle, a predominantly slow-twitch muscle, would be less vulnerable to tourniquet-induced ischemia–reperfusion than the plantaris (Plant), a predominantly fast-twitch muscle, as determined by the assessment of isometric contractile function. Male Sprague–Dawley rats were assigned to one of the following groups to undergo tourniquet application (TKA) (n = 6/group): 2 h TKA, 2 d recovery; 4 h TKA, 2 d recovery; 2 h TKA, 14 d recovery; or 4 h TKA, 14 d recovery. In situ isometric contractile properties were assessed in the predominantly slow-twitch Sol and the predominantly fast-twitch Plant; the contralateral muscle served as the internal control. At 2 d, muscle contraction could not be elicited via neural stimulation, but muscles did contract with direct stimulation, which indicates neural injury. This condition was resolved by day 14. At this time point, tetanic tension (Po) in the Plant was reduced by 45% and 69% in the 2 and 4 h groups, respectively. Po for the Sol was unaffected in the 2 h group, but was reduced by 30% in the 4 h group. The fatigue resistance of the Plant was increased 2 fold in the 4 h group and was unchanged in all other groups. These results demonstrate that vulnerability to tourniquet-induced ischemia–reperfusion injury is dramatically different with respect to muscle fiber-type composition.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pabodha Hettige ◽  
Uzma Tahir ◽  
Kiisa C. Nishikawa ◽  
Matthew J. Gage

Abstract Background Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. Results EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. Conclusions The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


2000 ◽  
Vol 279 (5) ◽  
pp. R1889-R1898 ◽  
Author(s):  
Jeffery Morrissette ◽  
Le Xu ◽  
Alexandra Nelson ◽  
Gerhard Meissner ◽  
Barbara A. Block

Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type–specific manner in fish skeletal muscle (11). In this study, we compare [3H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [3H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (Po) of RyR1-slow was threefold less than the maximum Po of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest Po of all the RyR channels and displayed less inhibition at millimolar Ca2+. The addition of 5 mM Mg-ATP or 2.5 mM β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP) to the channels increased the Po and [3H]ryanodine binding of both RyR1s but also caused a shift in the Ca2+ dependency curve of RyR1-slow such that Ca2+-dependent inactivation was attenuated. [3H]ryanodine binding data also showed that Mg2+-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca2+ is regulated in these muscle types.


2019 ◽  
Vol 10 (1) ◽  
pp. 259-265 ◽  
Author(s):  
Xiaoling Chen ◽  
Yafei Guo ◽  
Gang Jia ◽  
Hua Zhao ◽  
Guangmang Liu ◽  
...  

Ferulic acid promotes slow-twitch and inhibits fast-twitch myofiber formation via Sirt1/AMPK.


Sign in / Sign up

Export Citation Format

Share Document