Effects of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta

1999 ◽  
Vol 87 (5) ◽  
pp. 1752-1757 ◽  
Author(s):  
Scott A. Spier ◽  
M. Harold Laughlin ◽  
Michael D. Delp

Reductions in blood pressure that are associated with exercise training have been hypothesized to be the result of a sustained postexertional vascular alteration following single bouts of exercise. The purpose of this study was to determine whether a decrease in vascular sensitivity to vasoconstrictor agonists occurs after a single bout of exercise and whether this vascular alteration is sustained through various periods of exercise training. Vascular responses of abdominal aortic rings to norepinephrine (NE; 10−9–10−4M) were determined in vitro. Aortas were isolated from sedentary rats immediately after rats performed a single bout of treadmill exercise (30 m/min for 1 h); 24 h after the last exercise bout in rats exercised for 1 day; and 1, 2, 4, and 10 wk of training at 30 m/min, 60 min, 5 days/wk. Sensitivity to NE was only diminished after 10 wk of training. This diminished vascular sensitivity to NE was abolished with the removal of the endothelial cell layer. Furthermore, there were no reductions in developed tension or vascular sensitivity to the vasoconstrictor agonists KCl (10–100 mM), phenylephrine (10−8–10−4M), and arginine vasopressin (10−9–10−5M) in vessels either with or without the endothelial layer after a single bout of exercise. These data indicate that a single bout of exercise does not diminish aortic responsiveness to vasoconstrictor agonists and thus is not responsible for the diminished contractile responsiveness that occurs between 4 and 10 wk of moderate-intensity exercise training in rats. This vascular adaptation to exercise training appears to be mediated through an endothelium-dependent mechanism.

1999 ◽  
Vol 9 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Daryll B. Bullen ◽  
Mary L. O'Toole ◽  
Karen C. Johnson

The purpose of this study was to compare daily calcium (Ca) losses in sweat (S) and urine (U) on an exercise day (E) with losses on the preceding day (i.e., a rest day) during which no exercise (NE) was performed. Ten healthy male volunteers (23.9 ± 3.2 years) performed a single bout of moderate exercise (running at 80% HRmax) for 45 min in a warm (32 °C, 58% relative humidity) environment on E. When E and NE were compared, neither Ca intake (1,232 ± 714 and 1,148 ±482 mg, respectively) nor urinary Ca excretion (206 ± 128 and 189 ± 130 mg, respectively) were different (p > .05). Sweat Ca losses during the exercise bout averaged 45 ± 12 mg. The results indicate that, although a small amount of Ca is lost in sweat during 45 min of moderate-intensity exercise, measured (sweat and urine losses combined) Ca losses (251 ±128 and 189 ± 130 mg) were not different (p > .05) between days (E and NE, respectively). These data suggest that moderate exercise for up to 45 min in a warm, humid environment does not markedly increase Ca intake requirements.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 22
Author(s):  
Jason R. Jaggers ◽  
Wesley D. Dudgeon ◽  
Kenneth D. Phillips ◽  
Stephanie Burgess ◽  
J. Larry Durstine ◽  
...  

2014 ◽  
Vol 10 (3) ◽  
pp. 167-172 ◽  
Author(s):  
S.E. Pratt-Phillips ◽  
R.J. Geor ◽  
M. Buser ◽  
A. Zirkle ◽  
A. Moore ◽  
...  

Two experiments were designed to investigate the role of exercise on insulin sensitivity (IS) in Alaskan racing sled dogs. In both experiments, IS was quantified with an isoglycemic-hyperinsulinemic clamp (IHC), whereby IS was defined as the glucose infusion rate (GIR) divided by the mean insulin concentration during the clamp. In Experiment 1, IS was quantified in 12 racing sled dogs during three stages of exercise training: unexercised for 4 months over the summer (deconditioned), and after two and four months of exercise conditioning. At each stage IS was assessed in unexercised dogs (n=6) and 60 h following a standard exercise challenge (n=6) consisting of a 35.4 km run completed in 2.5 h. In Experiment 2, IS was assessed in deconditioned dogs (n=6) and in well-conditioned dogs that had either completed a 708 km race 5-days prior (n=3) or were unraced for the previous month (n=3). In Experiment 1, there were no significant differences (Pã0.05) in GIR or IS between the three levels of conditioning, nor were there any effects of the exercise bout 60 h prior to the IHC. In Experiment 2 there was no significant difference in IS between well-conditioned dogs and untrained dogs (Pã0.05). However, dogs that completed a 708 km race 5-days prior to the IHC had a significantly higher IS than dogs that were deconditioned and those that were conditioned but unraced. These results suggest that the workload of an exercise challenge is a factor in post-exercise changes in IS but that exercise conditioning has little impact on IS in Alaskan sled dogs.


2018 ◽  
Vol 3 (2) ◽  
pp. 484-487
Author(s):  
Santosh Kumar Deo ◽  
Kopila Agrawal ◽  
Prem Bhattrai ◽  
Raju Kumar Chaudhary

Introduction: Working memory is a kind of short term memory important for reasoning and guiding decision-making and behavioral process.Objective: The goal of the present research was to study the outcome of single bout of acute moderate-intensity exercise on working memory.Methodology: Twenty two male subjects were asked to perform working memory task by 2n back task in baseline resting, immediately after exercise and after five minute of exercise session. 3 minute step test procedure was used as a moderate intensity exercise intervention.Results: The percentage correctness of 2n back task of working memory was found to be 64.36% for baseline resting condition, 78.01 % for immediately after 3-minute step test and 80.70% for 5 minute after the exercise. In both exercise session (i.e. immediately after exercise and after 5 minute of exercise), significant improvement (p value <0.05) in working memory was seen as compared to the baseline resting session while no such significant beneficial improvement was seen when compared between immediately after exercise and after 5 minute of exercise.Conclusion: Improvement in working memory after moderate exercise intervention was seen, which is important for learning and memory and decision-making.  BJHS 2018;3(2)6:484-487.


2021 ◽  
Vol 33 (2) ◽  
pp. 82-89
Author(s):  
Yasmeen Mezil ◽  
Joyce Obeid ◽  
Inna Ushcatz ◽  
Sandeep Raha ◽  
Brian W. Timmons

Purpose: In girls and women, the authors studied the effects of an acute bout of low-impact, moderate-intensity exercise serum on myoblast and osteoblast proliferation in vitro. Methods: A total of 12 pre/early pubertal girls (8–10 y old) and 12 women (20–30 y old) cycled at 60% VO2max for 1 hour followed by 1-hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. C2C12 myoblasts and MC3T3E1 osteoblasts were incubated with serum from each time point for 1 hour, then monitored for 24 hours (myoblasts) or 36 hours (osteoblasts) to examine proliferation. Cells were also monitored for 6 days (myoblasts) to examine myotube formation and 21 days (osteoblasts) to examine mineralization. Results: Exercise did not affect myoblast or osteoblast proliferation. Girls exhibited lower cell proliferation relative to women at end of exercise (osteoblasts, P = .041; myoblasts, P = .029) and mid-recovery (osteoblasts, P = .010). Mineralization was lower at end of recovery relative to rest (P = .014) in both girls and women. Myotube formation was not affected by exercise or group. Conclusion: The systemic environment following one acute bout of low-impact moderate-intensity exercise in girls and women does not elicit osteoblast or myoblast activity in vitro. Differences in myoblast and osteoblast proliferation between girls and women may be influenced by maturation.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 486
Author(s):  
Wendy Pearson ◽  
Julia Guazzelli Pezzali ◽  
Renan Antunes Donadelli ◽  
Ashley Wagner ◽  
Preston Buff

There is little information available to describe the inflammatory consequences of and recovery from moderate-intensity exercise bouts in hunting dogs. The purpose of the current study is to generate pilot data on the appearance and disappearance of biomarkers of inflammation and inflammation resolution following a typical one-hour exercise bout in basset hounds. Four hounds were set out to find a scent and freely adopted running or walking over wooded terrain for approximately one hour. Venous blood samples were obtained before the exercise and at 1, 2, 4, 6, and 10 h following cessation of exercise and were analyzed for biomarkers of inflammation (prostaglandin E2 (PGE2), nitric oxide (NO), interleukin 1β (IL-1β)) tumour necrosis factor-α (TNF-α)), and inflammation resolution (resolvin D1 (RvD1)). There was an increase in inflammation one hour after the exercise, shown by a significant increase in PGE2. Following this peak, PGE2 steadily declined at the same time as RvD1 increased, with RvD1 peaking at six hours. This pilot study provides evidence that dogs that undergo an hour of hunt exercise experience transient inflammation that peaks one hour after the end of exercise; inflammation resolution peaks six hours after the end of exercise. Future studies should seek to further understand the distinct and combined roles of PGE2 and RvD1 in dog adaptation to exercise stress.


2004 ◽  
Vol 147 (5) ◽  
pp. e8-e15 ◽  
Author(s):  
Radim Jurca ◽  
Timothy S Church ◽  
Gina M Morss ◽  
Alexander N Jordan ◽  
Conrad P Earnest

2004 ◽  
Vol 286 (1) ◽  
pp. E85-E91 ◽  
Author(s):  
Veronic Bezaire ◽  
George J. F. Heigenhauser ◽  
Lawrence L. Spriet

Carnitine palmitoyltransferase I (CPT I) is considered the rate-limiting enzyme in the transfer of long-chain fatty acids (LCFA) into the mitochondria and is reversibly inhibited by malonyl-CoA (M-CoA) in vitro. In rat skeletal muscle, M-CoA levels decrease during exercise, releasing the inhibition of CPT I and increasing LCFA oxidation. However, in human skeletal muscle, M-CoA levels do not change during moderate-intensity exercise despite large increases in fat oxidation, suggesting that M-CoA is not the sole regulator of increased CPT I activity during exercise. In the present study, we measured CPT I activity in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondria isolated from human vastus lateralis (VL), rat soleus (Sol), and red gastrocnemius (RG) muscles. We tested whether exercise-related levels (∼65% maximal O2 uptake) of calcium and adenylate charge metabolites (free AMP, ADP, and Pi) could override the M-CoA-induced inhibition of CPT I activity and explain the increased CPT I flux during exercise. Protein content was ∼25-40% higher in IMF than in SS mitochondria in all muscles. Maximal CPT I activity was similar in IMF and SS mitochondria in all muscles (VL: 282 ± 46 vs. 280 ± 51; Sol: 390 ± 81 vs. 368 ± 82; RG: 252 ± 71 vs. 278 ± 44 nmol·min-1·mg protein-1). Sensitivity to M-CoA did not differ between IMF and SS mitochondria in all muscles (25-31% inhibition in VL, 52-70% in Sol and RG). Calcium and adenylate charge metabolites did not override the M-CoA-induced inhibition of CPT I activity in mitochondria isolated from VL, Sol, and RG muscles. Decreasing pH from 7.1 to 6.8 reduced CPT I activity by ∼34-40% in both VL mitochondrial fractions. In summary, this study reports no differences in CPT I activity or sensitivity to M-CoA between IMF and SS mitochondria isolated from human and rat skeletal muscles. Exercise-induced increases in calcium and adenylate charge metabolites do not appear responsible for upregulating CPT I activity in human or rat skeletal muscle during moderate aerobic exercise.


2020 ◽  
Vol 9 (5) ◽  
pp. 1379
Author(s):  
Katarzyna Hojan ◽  
Danuta Procyk ◽  
Dorota Horyńska-Kęstowicz ◽  
Ewa Leporowska ◽  
Maria Litwiniuk

Cardiotoxicity is known as a severe clinical problem in oncological practice that reduces the options for cancer therapy. Physical exercise is recognized as a well-established protective measure for many heart and cancer diseases. In our study, we hypothesized that supervised and moderate-intensity exercise training would prevent heart failure and its consequences induced by trastuzumab therapy. The aim of this study was to examine the effect of physical training on ventricular remodeling, serum cardiac markers, and exercise performance in women with human epidermal growth receptor 2 (HER2+) breast cancer (BC) undergoing trastuzumab therapy. This was a prospective, randomized, clinical controlled trial. Forty-six BC women were randomized into either an intervention group (IG) or a control group (CG). An exercise program (IG) was performed after 3–6 months of trastuzumab therapy at 5 d/week (to 80% maximum heart rate (HRmax)) for 9 weeks. We then evaluated their cardiac function using echocardiography, a 6-Minute Walk Test (6MWT), and plasma parameters (C-reactive protein (CRP), myoglobin (MYO), interleukin-6 (IL-6), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatine kinase (CK)). After the physical training program, we did not observe any significant changes in the left ventricular (LV) ejection fraction (LVEF) and 6MWT (p > 0.05) in the IG compared to the CG (decrease p < 0.05). The differences in the blood parameters were not significant (p < 0.05). To conclude, moderate-intensity exercise training prevented a decrease in the LVEF and physical capacity during trastuzumab therapy in HER2+ BC. Further research is needed to validate our results.


Sign in / Sign up

Export Citation Format

Share Document