scholarly journals The Time Course of Inflammatory Biomarkers Following a One-Hour Exercise Bout in Canines: A Pilot Study

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 486
Author(s):  
Wendy Pearson ◽  
Julia Guazzelli Pezzali ◽  
Renan Antunes Donadelli ◽  
Ashley Wagner ◽  
Preston Buff

There is little information available to describe the inflammatory consequences of and recovery from moderate-intensity exercise bouts in hunting dogs. The purpose of the current study is to generate pilot data on the appearance and disappearance of biomarkers of inflammation and inflammation resolution following a typical one-hour exercise bout in basset hounds. Four hounds were set out to find a scent and freely adopted running or walking over wooded terrain for approximately one hour. Venous blood samples were obtained before the exercise and at 1, 2, 4, 6, and 10 h following cessation of exercise and were analyzed for biomarkers of inflammation (prostaglandin E2 (PGE2), nitric oxide (NO), interleukin 1β (IL-1β)) tumour necrosis factor-α (TNF-α)), and inflammation resolution (resolvin D1 (RvD1)). There was an increase in inflammation one hour after the exercise, shown by a significant increase in PGE2. Following this peak, PGE2 steadily declined at the same time as RvD1 increased, with RvD1 peaking at six hours. This pilot study provides evidence that dogs that undergo an hour of hunt exercise experience transient inflammation that peaks one hour after the end of exercise; inflammation resolution peaks six hours after the end of exercise. Future studies should seek to further understand the distinct and combined roles of PGE2 and RvD1 in dog adaptation to exercise stress.

2010 ◽  
Vol 105 (4) ◽  
pp. 506-516 ◽  
Author(s):  
Nicholas M. Hurren ◽  
Frank F. Eves ◽  
Andrew K. Blannin

Moderate-intensity exercise can lower the TAG response to a high-fat meal; however, the British diet is moderate in fat, and no study to date has compared the effect of such exercise on responses to high-fat and moderate-fat meals. The present work investigated the effect of brisk walking performed 13 h before intake of both high-fat and moderate-fat meals on postprandial plasma TAG concentrations. Eight inactive, overweight men completed four separate 2 d trials, i.e. rest (Con) or a 90-min treadmill walk (Ex) on the evening of day 1, followed by the ingestion of a moderate-fat (Mod) or high-fat (High) meal on the morning of day 2. High-fat meals contained 66 % of total energy as fat, while the percentage was 35 % for moderate-fat meals; both the meals were, however, isoenergetic. On day 2, venous blood was sampled in the fasted state, 30 and 60 min after ingesting the test meal and then hourly until 6 h post-meal. Exercise reduced plasma TAG concentrations significantly (P < 0·001), with no exercise × meal interaction (P = 0·459). Walking reduced the total TAG response to a high-fat meal by 29 % (relative to High Con); the same bout of exercise performed before ingesting a moderate-fat meal lowered total TAG by 26 % (compared with Mod Con). The ability of a single moderate-intensity aerobic exercise bout to lower postprandial TAG concentrations is just as great, in percentage terms, when the test meal ingested is of a moderate rather than a high fat content.


1996 ◽  
Vol 77 (10) ◽  
pp. 1030-1036 ◽  
Author(s):  
Kevin M. Means ◽  
Daniel E. Rodell ◽  
Patricia S. O'Sullivan ◽  
Lillian A. Cranford

2018 ◽  
Vol 43 (12) ◽  
pp. 1298-1306 ◽  
Author(s):  
Aaron Raman ◽  
Jeremiah J. Peiffer ◽  
Gerard F. Hoyne ◽  
Nathan G. Lawler ◽  
Andrew J. Currie ◽  
...  

This study examined the effect of 2 forms of exercise on glucose tolerance and the concurrent changes in markers associated with the interleukin (IL)-6 pathways. Fifteen sedentary, overweight males (29.0 ± 3.1 kg/m2) completed 2 separate, 3-day trials in randomised and counterbalanced order. An oral glucose tolerance test (OGTT; 75 g) was performed at the same time on each day of the trial. Day 2 of each trial consisted of a single 30-min workload-matched bout of either high-intensity intermittent exercise (HIIE; alternating 100% and 50% of peak oxygen uptake) or continuous moderate-intensity exercise (CME; 60 % of peak oxygen uptake) completed 1 h prior to the OGTT. Venous blood samples were collected before, immediately after, 1 h after, and 25 h after exercise for measurement of insulin, C-peptide, IL-6, and the soluble IL-6 receptors (sIL-6R; soluble glycoprotein 130 (sgp130)). Glucose area under the curve (AUC) was calculated from capillary blood samples collected throughout the OGTT. Exercise resulted in a modest (4.4%; p = 0.003) decrease in the glucose AUC when compared with the pre-exercise AUC; however, no differences were observed between exercise conditions (p = 0.65). IL-6 was elevated immediately after and 1 h after exercise, whilst sgp130 and sIL-6R concentrations were reduced immediately after exercise. In summary, exercise was effective in reducing glucose AUC, which was attributed to improvements that took place between 60 and 120 min into the OGTT, and was in parallel with an increased ratio of IL-6 to sIL-6R, which accords with an increased activation via the “classical” IL-6 signalling pathway. Our findings suggest that acute HIIE did not improve glycaemic response when compared with CME.


2013 ◽  
Vol 114 (11) ◽  
pp. 1550-1562 ◽  
Author(s):  
Alexandra M. Williams ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

During step transitions in work rate (WR) within the moderate-intensity (MOD) exercise domain, pulmonary O2 uptake (V̇o2p) kinetics are slowed, and V̇o2p gain (ΔV̇o2p/ΔWR) is greater when exercise is initiated from an elevated metabolic rate. High-intensity interval training (HIT) has been shown to speed V̇o2p kinetics when step transitions to MOD exercise are initiated from light-intensity baseline metabolic rates. The effects of HIT on step transitions initiated from elevated metabolic rates have not been established. Therefore, this study investigated the effects of HIT on V̇o2p kinetics during transitions from low and elevated metabolic rates, within the MOD domain. Eight young, untrained men completed 12 sessions of HIT (spanning 4 wk). HIT consisted of 8–12 1-min intervals, cycling at a WR corresponding to 110% of pretraining maximal WR (WRmax). Pre-, mid- and posttraining, subjects completed a ramp-incremental test to determine maximum O2 uptake, WRmax, and estimated lactate threshold (θ̂L). Participants additionally completed double-step constant-load tests, consisting of step transitions from 20 W → Δ45% θ̂L [lower step (LS)] and Δ45 → 90% θ̂L [upper step (US)]. HIT led to increases in maximum O2 uptake ( P < 0.05) and WRmax ( P < 0.01), and τV̇o2p of both lower and upper MOD step transitions were reduced by ∼40% (LS: 24 s → 15 s; US: 45 s → 25 s) ( P < 0.01). However, the time course of adjustment of local muscle deoxygenation was unchanged in the LS and US. These results suggest that speeding of V̇o2p kinetics in both the LS and US may be due, in part, to an improved matching of muscle O2 utilization to microvascular O2 delivery within the working muscle following 12 sessions of HIT, although muscle metabolic adaptations cannot be discounted.


2014 ◽  
Vol 34 (12) ◽  
pp. 1873-1876 ◽  
Author(s):  
Julien V Brugniaux ◽  
Christopher J Marley ◽  
Danielle A Hodson ◽  
Karl J New ◽  
Damian M Bailey

Elevated cardiorespiratory fitness improves resting cerebral perfusion, although to what extent this is further amplified during acute exposure to exercise stress and the corresponding implications for cerebral oxygenation remain unknown. To examine this, we recruited 12 moderately active and 12 sedentary healthy males. Middle cerebral artery blood velocity (MCAv) and prefrontal cortical oxyhemoglobin (cO2Hb) concentration were monitored continuously at rest and throughout an incremental cycling test to exhaustion. Despite a subtle elevation in the maximal oxygen uptake (active: 52 ± 9 ml/kg per minute versus sedentary: 33 ± 5 ml/kg per minute, P < 0.05), resting MCAv was not different between groups. However, more marked increases in both MCAv (+28 ± 13% versus +18 ± 6%, P < 0.05) and cO2Hb (+5 ±4% versus −2 ± 3%, P < 0.05) were observed in the active group during the transition from low- to moderate-intensity exercise. Collectively, these findings indicate that the long-term benefits associated with moderate increase in physical activity are not observed in the resting state and only become apparent when the cerebrovasculature is challenged by acute exertional stress. This has important clinical implications when assessing the true extent of cerebrovascular adaptation.


2008 ◽  
Vol 294 (2) ◽  
pp. R577-R584 ◽  
Author(s):  
B. J. Gurd ◽  
S. J. Peters ◽  
G. J. F. Heigenhauser ◽  
P. J. LeBlanc ◽  
T. J. Doherty ◽  
...  

The adaptation of pulmonary O2 uptake (V̇o2p) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between V̇o2p kinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young ( n = 7) and older ( n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to ∼90% of estimated lactate threshold. Phase 2 V̇o2p kinetics were slower ( P < 0.05) in older (τ = 40 ± 17 s) compared with young (τ = 21 ± 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater ( P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater ( P < 0.05) in older compared with young adults. In young adults, PDH activity increased ( P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase ( P > 0.05) at 30 s of exercise but was elevated ( P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given V̇o2p in older adults, and there was a similar time course of HHb accompanying the slower V̇o2p kinetics in the older adults, suggesting a slower adaptation of bulk O2 delivery in older adults. In conclusion, the slower adaptation of V̇o2p in older adults is likely a result of both an increased metabolic inertia and lower O2 availability.


2016 ◽  
Vol 38 (4) ◽  
pp. 396-408 ◽  
Author(s):  
Christopher J. Brush ◽  
Ryan L. Olson ◽  
Peter J. Ehmann ◽  
Steven Osovsky ◽  
Brandon L. Alderman

The purpose of this study was to examine possible dose–response and time course effects of an acute bout of resistance exercise on the core executive functions of inhibition, working memory, and cognitive flexibility. Twenty-eight participants (14 female; Mage = 20.5 ± 2.1 years) completed a control condition and resistance exercise bouts performed at 40%, 70%, and 100% of their individual 10-repetition maximum. An executive function test battery was administered at 15 min and 180 min postexercise to assess immediate and delayed effects of exercise on executive functioning. At 15 min postexercise, high-intensity exercise resulted in less interference and improved reaction time (RT) for the Stroop task, while at 180 min low- and moderate-intensity exercise resulted in improved performance on plus–minus and Simon tasks, respectively. These findings suggest a limited and task-specific influence of acute resistance exercise on executive function in healthy young adults.


2010 ◽  
Vol 108 (4) ◽  
pp. 769-779 ◽  
Author(s):  
Dylan Thompson ◽  
Daniella Markovitch ◽  
James A. Betts ◽  
Dawn Mazzatti ◽  
James Turner ◽  
...  

Regular exercise may improve systemic markers of chronic inflammation, but direct evidence and dose-response information is lacking. The objective of this study was to examine the effect and time course of changes in markers of chronic inflammation in response to progressive exercise training (and subsequent detraining). Forty-one sedentary men 45–64 yr of age completed either a progressive 24-wk exercise intervention or control followed by short-term removal of the intervention (2-wk detraining). Serum IL-6 fell by −0.4 pg/ml (SD 0.6) after 12 wk and responded to moderate-intensity exercise. Serum alanine aminotransferase (ALT) activity fell −7 U/l (SD 11) at 24 wk although there was no evidence of any change by week 12 (and therefore ALT required more vigorous-intensity activity and/or a more prolonged intervention). The effect on IL-6 was lost after 2-wk detraining whereas the change in ALT was retained. The temporal fall and rise in IL-6 with training and subsequent detraining in men with high IL-6 at baseline provided a retrospective opportunity to examine parallel genomic changes in peripheral mononuclear cells. A subset of 53 probes was differentially regulated by at least twofold after training with 31 of these changes being lost after detraining ( n = 6). IL-6 responded quickly to the carefully monitored exercise intervention (within weeks) and required only moderate-intensity exercise, whereas ALT took longer to change and/or required more vigorous-intensity exercise. Further work is required to determine whether any of the genes that temporally changed in parallel with changes in IL-6 are a cause or consequence of this response.


Author(s):  
Éverton Lopes Vogt ◽  
Maiza Cristina Von Dentz ◽  
Débora Santos Rocha ◽  
Jorge Felipe Argenta Model ◽  
Lucas Stahlhöfer Kowalewski ◽  
...  

Introduction and objectives: Obesity represents a major global public health problem. Its etiology is multifactorial and includes poor dietary habits, such as hypercaloric and hyperlipidic diets (HFDs), physical inactivity, and genetic factors. Regular exercise is, per se, a tool for the treatment and prevention of obesity, and recent studies suggest that the beneficial effects of exercise can be potentiated by the fasting state, thus potentially promoting additional effects. Despite the significant number of studies showing results that corroborate such hypothesis, very few have evaluated the effects of fasted-state exercise in overweight/obese populations. Therefore, the aim of this study was to evaluate the subacute effects (12 h after conclusion) of a single moderate-intensity exercise bout, performed in either a fed or an 8 h fasted state, on serum profile, substrate-content and heat shock pathway–related muscle protein immunocontent in obese male rats. Methods: Male Wistar rats received a modified high-fat diet for 12 weeks to induce obesity and insulin resistance. The animals were allocated to four groups: fed rest (FER), fed exercise (FEE), fasted rest (FAR) and fasted exercise (FAE). The exercise protocol was a 30 min session on a treadmill, with an intensity of 60% of VO2max. The duration of the fasting period was 8 h prior to the exercise session. After a 12 h recovery, the animals were killed and metabolic parameters of blood, liver, heart, gastrocnemius and soleus muscles were evaluated, as well as SIRT1 and HSP70 immunocontent in the muscles. Results: HFD induced obesity and insulin resistance. Soleus glycogen concentration decreased in the fasted groups and hepatic glycogen decreased in the fed exercise group. The combination of exercise and fasting promoted a decreased concentration of serum total cholesterol and triglycerides. In the heart, combination fasting plus exercise was able to decrease triglycerides to control levels. In the soleus muscle, both fasting and fasting plus exercise were able to decrease triglyceride concentrations. In addition, heat shock protein 70 and sirtuin 1 immunocontent increased after exercise in the gastrocnemius and soleus muscles. Conclusions: An acute bout of moderate intensity aerobic exercise, when realized in fasting, may induce, in obese rats with metabolic dysfunctions, beneficial adaptations to their health, such as better biochemical and molecular adaptations that last for at least 12 h. Considering the fact that overweight/obese populations present an increased risk of cardiovascular events/diseases, significant reductions in such plasma markers of lipid metabolism are an important achievement for these populations.


2010 ◽  
Vol 24 (2) ◽  
pp. 349-354 ◽  
Author(s):  
David M. Williams ◽  
Jessica A. Whiteley ◽  
Shira Dunsiger ◽  
Ernestine G. Jennings ◽  
Anna E. Albrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document