scholarly journals Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy

2017 ◽  
Vol 123 (2) ◽  
pp. 444-450 ◽  
Author(s):  
Melissa L. Erickson ◽  
Jonathan P. Little ◽  
Jennifer L. Gay ◽  
Kevin K. McCully ◽  
Nathan T. Jenkins

Metformin is used clinically to reduce fasting glucose with minimal effects on postprandial glucose. Postmeal exercise reduces postprandial glucose and may offer additional glucose-lowering benefit beyond that of metformin alone, yet controversy exists surrounding exercise and metformin interactions. It is currently unknown how postmeal exercise and metformin monotherapy in combination will affect postprandial glucose. Thus, we examined the independent and combined effects of postmeal exercise and metformin monotherapy on postprandial glucose. A randomized crossover design was used to assess the influence of postmeal exercise on postprandial glucose excursions in 10 people treated with metformin monotherapy (57 ± 10 yr, HbA1C = 6.3 ± 0.6%). Each participant completed the following four conditions: sedentary and postmeal exercise (5 × 10-min bouts of treadmill walking at 60% V̇o2max) with metformin and sedentary and postmeal exercise without metformin. Peak postprandial glucose within a 2-h time window and 2-h total area under the curve was assessed after a standardized breakfast meal, using continuous glucose monitoring. Postmeal exercise significantly blunted 2-h peak ( P = 0.001) and 2-h area under the curve ( P = 0.006), with the lowest peak postprandial glucose excursion observed with postmeal exercise and metformin combined ( P < 0.05 vs. all other conditions: metformin/sedentary: 12 ± 3.4, metformin/exercise: 9.7 ± 2.3, washout/sedentary: 13.3 ± 3.2, washout/exercise: 11.1 ± 3.4 mmol/l). Postmeal exercise and metformin in combination resulted in the lowest peak postprandial glucose excursion compared with either treatment modality alone. Exercise timed to the postprandial phase may be important for optimizing glucose control during metformin monotherapy. NEW & NOTEWORTHY The interactive effects of metformin and exercise on key physiological outcomes remain an area of controversy. Findings from this study show that the combination of metformin monotherapy and moderate-intensity postmeal exercise led to beneficial reductions in postprandial glucose excursions. Postmeal exercise may be a useful strategy for the management of postprandial glucose in people on metformin.

2014 ◽  
Vol 39 (7) ◽  
pp. 835-841 ◽  
Author(s):  
Jonathan P. Little ◽  
Mary E. Jung ◽  
Amy E. Wright ◽  
Wendi Wright ◽  
Ralph J.F. Manders

The purpose of this study was to examine the impact of acute high-intensity interval training (HIIT) compared with continuous moderate-intensity (CMI) exercise on postprandial hyperglycemia in overweight or obese adults. Ten inactive, overweight or obese adults (41 ± 11 yrs, BMI = 36 ± 7 kg/m2) performed an acute bout of HIIT (10 × 1 min at approximately 90% peak heart rate (HRpeak) with 1-min recovery periods) or matched work CMI (30 min at approximately 65% HRpeak) in a randomized, counterbalanced fashion. Exercise was performed 2 h after breakfast, and glucose control was assessed by continuous glucose monitoring under standardized dietary conditions over 24 h. Postprandial glucose (PPG) responses to lunch, dinner, and the following day’s breakfast were analyzed and compared with a no-exercise control day. Exercise did not affect the PPG responses to lunch, but performing both HIIT and CMI in the morning significantly reduced the PPG incremental area under the curve (AUC) following dinner when compared with control (HIIT = 110 ± 35, CMI = 125 ± 34, control = 162 ± 46 mmol/L × 2 h, p < 0.05). The PPG AUC (HIIT = 125 ± 53, CMI = 186 ± 55, control = 194 ± 96 mmol/L × 2 h) and the PPG spike (HIIT = Δ2.1 ± 0.9, CMI = Δ3.0 ± 0.9, control = Δ3.0 ± 1.5 mmol/l) following breakfast on the following day were significantly lower following HIIT compared with both CMI and control (p < 0.05). Absolute AUC and absolute glucose spikes were not different between HIIT, CMI, or control for any meal (p > 0.05 for all). We conclude that a single session of HIIT has greater and more lasting effects on reducing incremental PPG when compared with CMI.


2018 ◽  
Vol 30 (1) ◽  
pp. 38-41
Author(s):  
Keith Tolfrey ◽  
Julia Kirstey Zakrzewski-Fruer ◽  
Alice Emily Thackray

Two publications were selected because they are excellent representations of studies examining different ends of the exercise-sedentary behavior continuum in young people. The first study is an acute response study with 13 mixed-sex, mid to late adolescents presenting complete data from 4 different randomized experimental crossover conditions for analyses. Continuous glucose monitoring showed that interrupting prolonged continuous sitting with body-weight resistance exercises reduced the postprandial glucose concentration compared with a time-matched uninterrupted period of sitting. Furthermore, the effects of the breaks in sitting time were independent of the energy content of the standardized meals, but variations in the area under the glucose time curves expression were important. The second study adopted a chronic 12-week exercise training intervention design with a large sample of obese children and adolescents who were allocated randomly to high-intensity interval training (HIIT), moderate-intensity continuous training, or nutritional advice groups. HIIT was the most efficacious for improving cardiorespiratory fitness compared with the other interventions; however, cardiometabolic biomarkers and visceral/subcutaneous adipose tissue did not change meaningfully in any group over the 12 weeks. Attrition rates from both HIIT and moderate-intensity continuous training groups reduce the validity of the exercise training comparison, yet this still provides a solid platform for future research comparisons using HIIT in young people.


2011 ◽  
Vol 140 (5) ◽  
pp. S-868
Author(s):  
Hiroko Hosaka ◽  
Motoyasu Kusano ◽  
Hiroaki Zai ◽  
Shiko Kuribayashi ◽  
Atsuto Nagoshi ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2502 ◽  
Author(s):  
Sodai Kubota ◽  
Yanyan Liu ◽  
Katsumi Iizuka ◽  
Hitoshi Kuwata ◽  
Yutaka Seino ◽  
...  

While adjustment of total energy and nutritional balance is critically important, meal sequence, a relatively simple method of correcting postprandial hyperglycemia, is becoming established as a practical dietary approach for prevention and management of diabetes and obesity. Meal sequence, i.e., consumption of protein and/or fat before carbohydrate, promotes secretion of glucagon-like peptide-1 (GLP-1) from the gut and ameliorates secretions of insulin and glucagon and delays gastric emptying, thereby improving postprandial glucose excursion. GLP-1 is known to suppress appetite by acting on the hypothalamus via the afferent vagus nerve. Thus, enhancement of GLP-1 secretion by meal sequence is expected to reduce body weight. Importantly, consumption of a diet rich in saturated fatty acids such as meat dishes before carbohydrate increases secretions of not only GLP-1 but also glucose-dependent insulinotropic polypeptide (GIP), which promotes energy storage in adipose tissue and may lead to weight gain in the long term. Dietary fiber intake before carbohydrate intake significantly reduces postprandial glucose elevation and may have a weight loss effect, but this dietary strategy does not enhance the secretion of GLP-1. Thus, it is suggested that their combination may have additive effects on postprandial glucose excursion and body weight. Indeed, results of some clinical research supports the idea that ingesting dietary fiber together with meal sequence of protein and/or fat before carbohydrate benefits metabolic conditions of individuals with diabetes and obesity.


Author(s):  
Michael J. Wheeler ◽  
Daniel J. Green ◽  
Ester Cerin ◽  
Kathryn A. Ellis ◽  
Ilkka Heinonen ◽  
...  

Abstract Background Postprandial glucose, insulin, and triglyceride metabolism is impaired by prolonged sitting, but enhanced by exercise. The aim of this study was to assess the effects of a continuous exercise bout with and without intermittent active interruptions to prolonged sitting on postprandial glucose, insulin, and triglycerides. Methods Sedentary adults who were overweight to obese (n = 67; mean age 67 yr SD ± 7; BMI 31.2 kg∙m− 2 SD ± 4.1), completed three conditions: SIT: uninterrupted sitting (8-h, control); EX+SIT: sitting (1-h), moderate-intensity walking (30-min), uninterrupted sitting (6.5-h); EX+BR: sitting (1-h), moderate-intensity walking (30- min), sitting interrupted every 30-min with 3-min of light-intensity walking (6.5 h). Participants consumed standardized breakfast and lunch meals and blood was sampled at 13 time-points. Results When compared to SIT, EX+SIT increased total area under the curve (tAUC) for glucose by 2% [0.1–4.1%] and EX+BR by 3% [0.6–4.7%] (all p < 0.05). Compared to SIT, EX+SIT reduced insulin and insulin:glucose ratio tAUC by 18% [11–22%] and 21% [8–33%], respectively; and EX+BR reduced values by 25% [19–31%] and 28% [15–38%], respectively (all p < 0.001 vs SIT, all p < 0.05 EX+SIT-vs-EX+BR). Compared to SIT, EX+BR reduced triglyceride tAUC by 6% [1–10%] (p = 0.01 vs SIT), and compared to EX+SIT, EX+BR reduced this value by 5% [0.1–8.8%] (p = 0.047 vs EX+SIT). The magnitude of reduction in insulin tAUC from SIT-to-EX+BR was greater in those with increased basal insulin resistance. No reduction in triglyceride tAUC from SIT-to-EX+BR was apparent in those with high fasting triglycerides. Conclusions Additional reductions in postprandial insulin-glucose dynamics and triglycerides may be achieved by combining exercise with breaks in sitting. Relative to uninterrupted sitting, this strategy may reduce postprandial insulin more in those with high basal insulin resistance, but those with high fasting triglycerides may be resistant to such intervention-induced reductions in triglycerides. Trial registration Australia New Zealand Clinical Trials Registry (ACTRN12614000737639).


2012 ◽  
Vol 02 (01) ◽  
pp. 82-87 ◽  
Author(s):  
Saad Abdulrahman Hussain ◽  
Zheen Aorahman Ahmed ◽  
Taha Othman Mahwi ◽  
Tavga Ahmed Aziz

Sign in / Sign up

Export Citation Format

Share Document