Understanding cognitive performance during exercise in Reserve Officers’ Training Corps: establishing the executive function-exercise intensity relationship

2020 ◽  
Vol 129 (4) ◽  
pp. 846-854
Author(s):  
Brandon L. Stone ◽  
Madison Beneda-Bender ◽  
Duncan L. McCollum ◽  
Jongjoo Sun ◽  
Joseph H. Shelley ◽  
...  

The executive functioning aspect of cognition was evaluated during graded exercise in Reserve Officers’ Training Corps cadets. Executive function declined at exercise intensities of ≥80% of heart rate reserve. The decline in executive function was coupled with declines in the oxygenation of the prefrontal cortex, the brain region responsible for executive functioning. These data define the executive function-exercise intensity relationship and provide evidence supporting the reticular activation hypofrontality theory as a model of cognitive change.

2021 ◽  
pp. 1-7
Author(s):  
Tércio A.R. Barros ◽  
Wagner L. do Prado ◽  
Thiago R.S. Tenório ◽  
Raphael M. Ritti-Dias ◽  
Antônio H. Germano-Soares ◽  
...  

This study compared the effects of self-selected exercise intensity (SEI) versus predetermined exercise intensity (PEI) on blood pressure (BP) and arterial stiffness in adolescents with obesity. A total of 37 adolescents, 14.7 (1.6) years old, body mass index ≥95th percentile were randomly allocated into SEI (n = 18; 12 boys) or PEI (n = 19; 13 boys). Both groups exercised for 35 minutes on a treadmill, 3 times per week, for 12 weeks. The SEI could set the speed at the beginning of the sessions and make changes every 5 minutes. The PEI adolescents were trained at an intensity set at 60% to 70% of heart rate reserve. Brachial and central BP, pulse pressure, augmentation index, and carotid–femoral pulse wave were determined at baseline and after 12 weeks. Both groups reduced brachial systolic BP (SEI, Δ = −9 mm Hg; PEI, Δ = −4 mm Hg; P < .01), central systolic BP (SEI, Δ = −4 mm Hg; PEI, Δ = −4 mm Hg; P = .01), and central pulse pressure (SEI, Δ = −4 mm Hg; PEI, Δ = −3 mm Hg; P = .02) without differences between groups. No changes in the augmentation index and carotid–femoral pulse wave were observed in either group. The SEI induced similar changes in various cardiovascular outcomes compared with PEI in adolescents with obesity.


2011 ◽  
Vol 36 (6) ◽  
pp. 839-847 ◽  
Author(s):  
Felipe A. Cunha ◽  
Adrian W. Midgley ◽  
Walace D. Monteiro ◽  
Felipe K. Campos ◽  
Paulo T.V. Farinatti

The relationship between the percentage of heart rate reserve (%HRR) and percentage of oxygen uptake reserve (%VO2R) has been recommended for prescribing aerobic exercise intensity. However, this relationship was derived from progressive maximal exercise testing data, and the stability of the relationship during prolonged exercise at a constant work rate has not been established. The main aim of this study was to investigate the stability of the %VO2R–%HRR relationship during prolonged treadmill exercise bouts performed at 3 different constant work rates. Twenty-eight men performed 4 exercise tests: (i) a ramp-incremental maximal exercise test to determine maximal heart rate (HRmax) and maximal oxygen uptake (VO2max) and (ii) three 40-min exercise bouts at 60%, 70%, and 80% VO2R. HR and VO2 significantly increased over time and were influenced by exercise intensity (p < 0.001 and p = 0.004, respectively). A 1:1 relationship between %HRR and %VO2R, and between %HRR and %VO2max, was not observed, with mean differences of 8% (t = 5.2, p < 0.001) and 6% (t = 4.8, p < 0.001), respectively. The VO2 values predicted from the ACSM running equation were all significantly higher than the observed VO2 values (p < 0.001 for all comparisons), whereas a difference for HR was observed only for the tenth min of exercise at 80% VO2R (p = 0.041). In conclusion, the main finding of this study was that the %HRR–%VO2R relationship determined by linear regression, obtained from progressive maximal exercise testing, did not apply to prolonged treadmill running performed at 3 work rates.


2019 ◽  
Vol 03 (02) ◽  
pp. E32-E39 ◽  
Author(s):  
Ryan Weatherwax ◽  
Nigel Harris ◽  
Andrew E. Kilding ◽  
Lance Dalleck

AbstractThis study sought to examine time course changes in maximal oxygen consumption (VO2max) confirmed with verification testing following 12 weeks of standardized vs. individualized exercise training. Participants (N=39) were randomly allocated to differing exercise intensity prescription groups: ventilatory threshold (individualized) or % heart rate reserve (standardized). At baseline, 4, 8, and 12 weeks, participants completed maximal exercise testing with a verification protocol to confirm ‘true VO2max.’ VO2max in the standardized group changed from 24.3±4.6 ml·kg−1·min−1 at baseline to 24.7±4.6, 25.9±4.7, and 26.0±4.2 ml·kg−1·min−1 at week 4, 8, and 12, respectively, with a significant difference (p<0.05) in VO2max at week 8 and 12 compared to baseline. The individualized group had increases in VO2max from online 2 9.5±7.5 ml·kg−1·min−1 at baseline to 30.6±8.4, 31.4±8.4, and 32.8±8.6 ml·kg−1·min−1 at week 4, 8, and 12, respectively. In the individualized group, there were significant differences (p<0.05) in VO2max from baseline to week 8 and 12 and a significant increase in VO2max from week 8 to 1 online 2. Although not statistically significant, our preliminary data demonstrates a more rapid and potent improvement in VO2max when exercise intensity is individualized. This is the first investigation to employ use of the verification procedure to confirm ‘true VO2max’ changes following exercise training using ventilatory thresholds.


1992 ◽  
Vol 4 (4) ◽  
pp. 360-366 ◽  
Author(s):  
Timothy R. McConnell ◽  
Jean H. Haas ◽  
Nancy C. Conlin

Thirty-eight children (mean age 12.2 ±3.6 yrs) were tested to (a) compare the training heart rate (HR) and oxygen uptake (V̇O2) computed from commonly used exercise prescription methods to the heart rate (HRAT) and V̇O2 (ATge) at the gas exchange anaerobic threshold, (b) compute the range of relative HRs and V̇O2s (% HRmax and % V̇O2max, respectively) at which the ATge occurred, and (c) discuss the implications for prescribing exercise intensity. The ATge occurred at a V̇O2 of 20.9 ml · kg−1 · min−1 and an HR of 129 beats·min−1. The training HR and V̇O2 computed using 70 and 85% HRmax, 70% of the maximal heart rate reserve (HRR), and 57 and 78% V·O2max, were significantly different (p<.05) from their corresponding ATge values. To compute training % HRmax, % V̇O2max, and % HRR values that would not significantly differ from the ATge, then 68% HRmax, 48% V̇O2max, and 41% HRR would need to be used for the current population.


2013 ◽  
Vol 39 (1) ◽  
pp. 93-101 ◽  
Author(s):  
José M. Muyor

Abstract The purpose of the study was: 1) to determine the intensity of an indoor cycling session; 2) to know the correlation between the rating of perceived exertion (RPE) scales (Borg and OMNI) and % heart rate reserve (%HRR) with categories; and 3) to evaluate the validity of RPE scales (Borg and OMNI) with respect to the heart rate (HR) and %HRR. A total of fifty-three subjects, 25 males and 28 females (ages: 28.79 ± 6.04 years; body height: 1.71 ± 0.09 m; body mass: 69.59 ± 13.69 kg) were recruited from a private fitness club. All subjects performed the same predesigned indoor cycling session with a total duration of 50 minutes. During the experimental trial, the HR was recorded every 5 s. The Borg 6-20 RPE and OMNI 0-10 scales were used to assess perceived exertion in each phase. The average HR in the cardiovascular phase was 152.24 ± 14.11 b•min-1, the %HRR was 80.62 ± 7.10; and the overall RPE (Borg and OMNI scales) was 14.94 ± 1.11 and 7.18 ± 0.79 points, respectively. The correlation between an average HR and %HRR with Borg and OMNI scales was lower than r = 0.4 (p < 0.05). The correlation value between the Borg and the OMNI RPE scales was r = 0.82 (p < 0.001). It can be concluded that indoor cycling elicits effort of high intensity which could be inappropriate for some participants. The Borg and OMNI scales showed a low validity to quantify the intensity performed in indoor cycling sessions. It indicates the necessity to control the intensity of effort with other instruments to improve efficacy and decrease the risk of overload in this activity.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5574 ◽  
Author(s):  
Ricardo B. Viana ◽  
Rodrigo L. Vancini ◽  
Carlos A. Vieira ◽  
Paulo Gentil ◽  
Mário H. Campos ◽  
...  

Background Despite the increasing popularity of exergame practice and its promising benefits in counteracting physical inactivity, limited research has been performed to document the physiological responses during an exergame session. This study aims (i) to investigate the responses of heart rate (HR) and oxygen uptake (${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$) during an exergame session and to compare with HR and ${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$ measured during joystick session and (ii) to compare HR and ${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$ obtained during exergame and joystick session with those HR and ${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$ associated with first and second ventilatory thresholds (VT1 and VT2, respectively) obtained during a maximal graded exercise test. Methods A total of 39 participants performed a maximal graded exercise test to determine maximal oxygen uptake (${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}\max $), VT1, and VT2. On separate days, participants performed an exergame and traditional sedentary game (with a joystick) sessions. The time that participants remained with HR and ${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$ below the VT1, between the VT1 and VT2 and above the VT2 were calculated to determine exercise intensity. Results Heart rate and ${\dot{\rm V}}{{\rm{O}}_{\rm{2}}}$ were below VT1 during 1,503 ± 292 s (86.1 ± 16.7%) and 1,610 ± 215 s (92.2 ± 12.3%), respectively. There was an increase in HR and ${{\dot {\rm V}}}{{\rm{O}}_{\rm{2}}}$ as a function of exergame phases, since HR mean values in the ‘warm-up’ period (119 ± 13 bpm) were lower than the ‘main phase’ (136 ± 15 bpm) and ‘cool-down’ periods (143 ± 15 bpm) (p < 0.001). Regarding ${\dot {\rm V}}{{\rm{O}}_{\rm{2}}}$ values, the ‘warm-up’ (25.7 ± 2.9 mL.kg−1.min−1) were similar to the ‘main phase’ (25.1 ± 2.8 mL.kg−1.min−1) (p > 0.05) and lower than the ‘cool-down’ (28.0 ± 4.8 mL.kg−1.min−1) (p < 0.001). For all times of the joystick session, average HR and ${\dot {\rm V}}{{\rm{O}}_{\rm{2}}}$ were below the VT1 levels. Conclusion Exergames can be classified as light to moderate exercise. Thus, exergames could be an interesting alternative to traditional forms of exercise.


Sign in / Sign up

Export Citation Format

Share Document