Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence

2007 ◽  
Vol 102 (1) ◽  
pp. 255-260 ◽  
Author(s):  
Bernardo Rodriguez-Iturbe ◽  
Lili Sepassi ◽  
Yasmir Quiroz ◽  
Zhenmin Ni ◽  
Nosratola D. Vaziri

Mitochondria are the major source of superoxide (O2−) in the aerobic organisms. O2− produced by the mitochondria is converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD2). Mice with complete SOD2 deficiency (SOD2−/−) exhibit dilated cardiomyopathy and fatty liver leading to neonatal mortality, whereas mice with partial SOD2 deficiency (SOD2+/−) show evidence of O2−-induced mitochondrial damage resembling cell senescence. Since earlier studies have provided compelling evidence for the role of oxidative stress and tubulointerstitial inflammation in the pathogenesis of hypertension, we tested the hypothesis that partial SOD2 deficiency may result in hypertension. Wild-type (SOD2+/+) and partial SOD2-deficient (SOD2+/−) mice had similar blood pressures at 6–7 mo of age, but at 2 yr SOD2+/− mice had higher blood pressure. Oxidative stress, renal interstitial T-cell and macrophage infiltration, tubular damage, and glomerular sclerosis were all significantly increased in 2-yr-old SOD2+/− mice. High-salt diet induced hypertension in 6-mo-old SOD2-deficient mice but not in wild-type mice. In conclusion, partial SOD2 deficiency results in oxidative stress and renal interstitial inflammation, changes compatible with accelerated renal senescence and salt-sensitive hypertension. These findings are consistent with the pattern described in numerous other models of salt-sensitive hypertension and resemble that commonly seen in elderly humans.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sergey I Dikalov ◽  
Vladimir Mayorov ◽  
Daniel Fehrenbach ◽  
Mingfang Ao ◽  
Alexander Panov ◽  
...  

We have previously reported that depletion Cyclophilin D (CypD), a regulatory subunit of mitochondrial permeability transition pore, improves vascular function and attenuates hypertension, however, specific regulation of CypD in hypertension is not clear. Analysis of human arterioles from hypertensive patients did not reveal alterations in CypD levels but showed 3-fold increase in CypD acetylation. We hypothesized that CypD-K166 acetylation promotes vascular oxidative stress and hypertension, and measures to reduce CypD acetylation can improve vascular function and reduce hypertension. Essential hypertension and animal models of hypertension are linked to inactivation of mitochondrial deacetylase Sirt3 by highly reactive lipid oxidation products, isolevuglandins (isoLGs), and supplementation of mice with mitochondria targeted scavenger of isoLGs, mito2HOBA, improves CypD deacetylation. To test the specific role of CypD-K166 acetylation, we developed CypD-K166R deacetylation mimic mutant mice. Mitochondrial respiration, vascular function and systolic blood pressure in CypD-K166R mice was similar to wild-type C57Bl/6J mice. Meanwhile, angiotensin II-induced hypertension was substantially attenuated in CypD-K166R mice (144 mmHg) compared with wild-type mice (161 mmHg). Angiotensin II infusion in wild-type mice significantly increased mitochondrial superoxide, impaired endothelial dependent relaxation, and reduced the level of endothelial nitric oxide which was prevented in angiotensin II-infused CypD-K166R mice. Hypertension is linked to increased levels of inflammatory cytokines TNFα and IL-17A promoting vascular oxidative stress and end-organ damage. We have tested if CypD-K166R mice are protected from cytokine-induced oxidative stress. Indeed, ex vivo incubation of aorta with the mixture of angiotensin II, TNFα and IL-17A (24 hours) increased mitochondrial superoxide by 2-fold in wild-type aortas which was abrogated in CypD-K166R mice. These data support the pathophysiological role of CypD acetylation in inflammation, oxidative stress and hypertensive end-organ damage. We propose that targeting CypD acetylation may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Anna Dikalova ◽  
Liliya Tkachuk ◽  
Marcos G Lopez ◽  
Frederic T Billings ◽  
Sergey Dikalov

Almost one-half of adults have hypertension, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs, likely due to mechanisms contributing to blood pressure elevation that are not affected by current treatments. Hypertension is linked to oxidative stress; however, common antioxidants are ineffective. We found that hypertension is associated with inactivation of key mitochondrial antioxidant, superoxide dismutase 2 (SOD2), due to acetylation of lysine residues at the catalytic center. The role of specific SOD2 lysine residues in hypertension, however, has not been defined. Hypothesis: We proposed that inactivation of key intrinsic antioxidant, SOD2, in hypertension is linked to acetylation of Lysine 68, and mutation of K68 to Arginine mimics SOD2 deacetylation, inhibits vascular oxidative stress and attenuates angiotensin II-induced hypertension. To test this hypothesis, we have investigated SOD2 acetylation in arterioles from patients with essential hypertension and developed a new deacetylation mimic SOD2 mutant K68R mice (SOD2-K68R). Western blot of arterioles isolated from human mediastinal fat showed 3-fold increase in SOD2 acetylation in hypertensive patients compared with normotensive subjects while SOD2 levels were not affected. To define the functional significance of K68 acetylation we performed studies in vivo in SOD2-K68R mice using angiotensin II model of vascular dysfunction and hypertension. Angiotensin II infusion in wild-type C57Bl/6J mice induced vascular inflammation and oxidative stress, and increased blood pressure to 160 mm Hg. Mutation of Lysine 68 to Arginine in SOD2-K68R mice completely prevented the increase in mitochondrial superoxide and significantly attenuated the angiotensin II induced hypertension (135 mm Hg). Angiotensin II and TNFα co-operatively induce SOD2 acetylation and hypertension. Treatment of wild-type aortas with angiotensin II and TNFα in organoid culture increased mitochondrial superoxide by 2-fold which was completely prevented in aortas isolated from SOD2-K68R mice. Conclusions: These data support an important role of SOD2-K68 acetylation in hypertension and targeting Sirt3-mediated deacetylation of SOD2 may have therapeutic potential.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Anna Dikalova ◽  
Liliya Tkachuk ◽  
Marcos G Lopez ◽  
Frederic T Billings ◽  
Sergey I Dikalov

By recent guidelines, almost one-half of adults have hypertension, and blood pressure is poorly controlled in a third of patients despite use of multiple drugs, likely due to mechanisms contributing to blood pressure elevation that are not affected by current treatments. Hypertension is linked to oxidative stress; however, common antioxidants are ineffective. We found that hypertension is associated with inactivation of key mitochondrial antioxidant, superoxide dismutase 2 (SOD2), due to acetylation of lysine residues at the catalytic center. The role of specific SOD2 lysine residues in hypertension, however, has not been defined. We proposed that inactivation of key intrinsic antioxidant, SOD2, in hypertension is linked to acetylation of Lysine 68, and mutation of K68 to Arginine mimics SOD2 deacetylation, inhibits vascular oxidative stress and attenuates angiotensin II-induced hypertension. To test this hypothesis, we have investigated SOD2 acetylation in arterioles from patients with essential hypertension and developed a new deacetylation mimic SOD2 mutant K68R mice (SOD2-K68R). Western blot analysis of arterioles isolated from human mediastinal fat showed 3-fold increase in SOD2 acetylation in hypertensive patients compared with normotensive subjects while SOD2 levels were not affected. To define the functional significance of K68 acetylation we performed studies in vivo in SOD2-K68R mice using angiotensin II model of vascular dysfunction and hypertension. Angiotensin II infusion in wild-type C57Bl/6J mice induced vascular inflammation and oxidative stress, and increased blood pressure to 160 mm Hg. Mutation of Lysine 68 to Arginine in SOD2-K68R mice completely prevented the increase in mitochondrial superoxide and significantly attenuated the angiotensin II induced hypertension (135 mm Hg). Angiotensin II and TNFα co-operatively induce SOD2 acetylation and hypertension. Treatment of wild-type aortas with angiotensin II and TNFα in organoid culture increased mitochondrial superoxide by 2-fold which was completely prevented in aortas isolated from SOD2-K68R mice. These data support an important role of SOD2-K68 acetylation in hypertension, and strategies to reduce mitochondrial acetylation may have therapeutic potential.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 522 ◽  
Author(s):  
Wang ◽  
Xiao ◽  
Huang ◽  
Liu

In this study, cell death induced by the oxidant tert-butylhydroperoxide (tBH) was observed in U2OS cells; this phenotype was rescued by Syntaxin 17 (STX17) knockout (KO) but the mechanism is unknown. STX17 plays dual roles in autophagosome–lysosome fusion and mitochondrial fission. However, the contribution of the two functions of STX17 to apoptosis has not been extensively studied. Here, we sought to dissect the dual roles of STX17 in oxidative-stress-induced apoptosis by taking advantage of STX17 knockout cells and an autophagosome–lysosome fusion defective mutant of STX17. We generated STX17 knockout U2OS cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and the STX17 knockout cells were reconstituted with wild-type STX17 and its autophagosome–lysosome fusion defective mutant. Autophagy was assessed by autophagic flux assay, Monomer red fluorescent protein (mRFP)–GFP–LC3 assay and protease protection assay. Golgi, endoplasmic reticulum (ER)/ER–Golgi intermediate compartment (ERGIC) and mitochondrial dynamics were examined by staining the different indicator proteins. Apoptosis was evaluated by caspase cleavage assay. The general reactive oxygen species (ROS) were detected by flow cytometry. In STX17 complete knockout cells, sealed autophagosomes were efficiently formed but their fusion with lysosomes was less defective. The fusion defect was rescued by wild-type STX17 but not the autophagosome–lysosome fusion defective mutant. No obvious defects in Golgi, ERGIC or ER dynamics were observed. Mitochondria were significantly elongated, supporting a role of STX17 in mitochondria fission and the elongation caused by STX17 KO was reversed by the autophagosome–lysosome fusion defective mutant. The clearance of protein aggregation was compromised, correlating with the autophagy defect but not with mitochondrial dynamics. This study revealed a mixed role of STX17 in autophagy, mitochondrial dynamics and oxidative stress response. STX17 knockout cells were highly resistant to oxidative stress, largely due to the function of STX17 in mitochondrial fission rather than autophagy.


2004 ◽  
Vol 287 (3) ◽  
pp. H1141-H1148 ◽  
Author(s):  
Jon J. Andresen ◽  
Frank M. Faraci ◽  
Donald D. Heistad

MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD−/− mice die soon after birth, and MnSOD+/− mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD+/− mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2α (PGF2α), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD+/− mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2α and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD+/− mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD+/− mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD+/− mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2α similarly in aortas of WT and MnSOD+/− mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD+/− mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.


2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 928-928
Author(s):  
Philip Murphy ◽  
Edel Mullen ◽  
Stephen Bergin ◽  
Geraldine Healy ◽  
Michelle Lavin ◽  
...  

Abstract Red Blood Cells from COVID-19 Patients Show Evidence of Increased Oxidative Stress and Increased Lactate Influx Corona Disease 19 (COVID-19) is caused by SARS-CoV-2, a novel, highly infectious, single stranded RNA virus. In severe cases, excess oxidative stress produced by a 'cytokine storm' may generate excess reactive oxygen species (ROS) and lead to tissue damage in the lungs and elsewhere. As the potential role of RBCs in the pathophysiology of COVID-19 remains controversial (1), we investigated for evidence of increased oxidative stress and increased thrombotic tendency in RBCs from patients with COVID-19 infection. Following ethical approval and written informed consent, we used flow cytometry (BD FACSCanto II) to measure baseline RBC ROS following incubation with 2'-7'-dichlorofluorescein diacetate (DCF). RBC ROS were also measured following pre-incubation with hydrogen peroxide (H2O2) (2mM) +/- antioxidant N-acetyl cysteine (NAC) (0.6mM). We also measured RBC surface expression of adhesion molecules CD44, CD47 and CD242, as well as CD147. Results were expressed as mean +/- standard deviation (SD). RBC ROS were measured in 22 COVID-19 positive patients and in 10 age matched healthy controls. One patient died from respiratory failure, whilst only 3 others required ITU admission for continuous positive airway pressure (CPAP) or intubation. There was no statistical difference in mean basal RBC DCF mean fluorescence intensity (MFI) levels between COVID-19 positive patients and controls. However, mean increase in RBC DCF MFI following H2O2 incubation was significantly higher in the COVID-19 positive group (1105.7+/-336.3) compared to the control group (843.4+/-256.7)( p= 0.042). The increase in RBC DCF MFI in the COVID-19 positive group correlated with CRP (p=0.014) but not with D-dimer, serum ferritin or any complete blood count (CBC) parameters. Incubation of RBC with 0.6 mM NAC for 30 minutes prior to H2O2 exposure caused a mean reduction in DCF MFI of 26.7% in the COVID-19 positive group. RBC expression of CD44, CD47, CD242 and CD147 were measured In a separate cohort of COVID-19 positive patients (n=32), and in 22 age matched controls. There were no statistically significant differences in mean expression levels of CD44, CD47 and CD242 between the 2 groups. However, mean RBC CD147 MFI expression was higher in the COVID-19 group (1319.64+/-374.76) compared to controls (1061.59+/-253.33) (p=0.018). There was no significant correlation between RBC CD147 MFI and D-dimer, CRP, serum ferritin or any CBC parameters in the COVID-19 positive group. However, 21 of the 32 COVID-19 positive patients had blood lactate levels measured and there was a positive correlation between CD147 MFI expression and blood lactate (R=0.56, p=0.0077). Induction of oxidative stress by H2O2 resulted in a greater increase in ROS in RBCs from COVID-19 patients compared to controls and with correlation to CRP, despite the fact that there were very few patients with severe disease in the study. This suggests a role for oxidative stress in disease pathogenesis. Pre-incubation with NAC attenuated this increase in ROS, suggesting a possible role for antioxidants in therapy. Increased RBC cell surface expression of adhesion molecules CD44, CD47 and CD242 can facilitate RBC interaction with platelets and/or endothelial cells, potentially contributing to thrombosis. We found no increase in their expression in COVID-19 patients compared to controls although RBCs may contribute to thrombosis in COVID-19 infection by other means (1). CD147 is tightly associated with and enables proper expression of monocarboxylate transporter 1, the lactate transporter for RBCs. We found increased surface expression of CD147 on RBCs of COVID-19 patients, whilst CD147 expression showed a moderate correlation with serum lactate levels, suggesting that RBCs in COVID-19 infection may be acting as a lactate sink to protect against lactic acidosis. In summary, our study suggests that COVID-19 infection causes increased oxidative stress and increased lactate influx in RBCs. Further studies are warranted into the role of RBCs in COVID-19 infection. Reference: (1) Murphy P, Glavey S, Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leuk Lymphoma 2021;62:1539 Disclosures Quinn: Takeda: Honoraria. Glavey: Abbvie: Research Funding; Celgene and BMS company: Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria, Research Funding.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Rohan U Parekh ◽  
Abdel A Abdel-rahman ◽  
Srinivas Sriramula

Hyperactivity of the orexin system contributes to several animal models of hypertension and enhances arginine vasopressin (AVP) release. We previously reported higher neuronal kinin B1 receptor (B1R) expression and brain AVP levels in hypertensive mice. However, the role of B1R and its interaction with orexin system in neurogenic hypertension have not been studied. In the present study, we tested the hypothesis that kinin B1R contributes to hypertension by upregulation of orexin-AVP signaling in the brain. Deoxycorticosterone acetate (DOCA)-salt treatment (1 mg/g body weight DOCA, 1% saline in drinking water, 3 weeks) of wild-type (WT) male mice produced a significant increase in mean arterial pressure (MAP; radio-telemetry) (138 ±3 mmHg, n=8, p<0.01) that was blunted in B1R knockout mice (121±2 mmHg, P <0.05 vs. WT+DOCA). In WT mice, DOCA-salt, compared to vehicle, increased mRNA levels of orexin receptor 1 (2.5 fold, n=9, p<0.001), orexin receptor 2 (3 fold, n=9, p<0.001) and AVP (3 fold, n=9, p<0.01) in the hypothalamic paraventricular nucleus (PVN), and these DOCA-salt evoked effects were attenuated in B1RKO mice. Similarly, DOCA-salt evoked increases in protein expression of orexin receptor 1 and 2 in the hypothalamic PVN of WT mice were attenuated by 25±5% and 33±5% (p<0.05), respectively, in B1RKO vs WT+DOCA mice. Furthermore, DOCA-salt treatment increased plasma AVP levels in WT mice compared to vehicle treated mice (13.69±1.1 vs. 47.86±8.7 pg/ml, p<0.05), but not in B1RKO mice. Together, these data provide novel evidence that kinin B1R plays an important role in mediating DOCA-salt induced hypertension possibly via upregulating the orexin-AVP signaling in the brain.


2004 ◽  
Vol 122 (4) ◽  
pp. 443-452 ◽  
Author(s):  
Mercedes Martin ◽  
Leonardo M. Casano ◽  
Jose M. Zapata ◽  
Alfredo Guera ◽  
Eva M. del Campo ◽  
...  

2002 ◽  
Vol 282 (4) ◽  
pp. L719-L726 ◽  
Author(s):  
Russell P. Bowler ◽  
Mike Nicks ◽  
Karrie Warnick ◽  
James D. Crapo

Bleomycin administration results in well-described intracellular oxidative stress that can lead to pulmonary fibrosis. The role of alveolar interstitial antioxidants in this model is unknown. Extracellular superoxide dismutase (EC-SOD) is the primary endogenous extracellular antioxidant enzyme and is abundant in the lung. We hypothesized that EC-SOD plays an important role in attenuating bleomycin-induced lung injury. Two weeks after intratracheal bleomycin administration, we found that wild-type mice induced a 106 ± 25% increase in lung EC-SOD. Immunohistochemical staining revealed that a large increase in EC-SOD occurred in injured lung. Using mice that overexpress EC-SOD specifically in the lung, we found a 53 ± 14% reduction in bleomycin-induced lung injury assessed histologically and a 17 ± 6% reduction in lung collagen content 2 wk after bleomycin administration. We conclude that EC-SOD plays an important role in reducing the magnitude of lung injury from extracellular free radicals after bleomycin administration.


Sign in / Sign up

Export Citation Format

Share Document