Greater effect of diet than exercise training on the fatty acid profile of rat skeletal muscle

2004 ◽  
Vol 96 (3) ◽  
pp. 974-980 ◽  
Author(s):  
Nigel Turner ◽  
Jong Sam Lee ◽  
Clinton R. Bruce ◽  
Todd W. Mitchell ◽  
Paul L. Else ◽  
...  

We determined the interaction of diet and exercise-training intensity on membrane phospholipid fatty acid (FA) composition in skeletal muscle from 36 female Sprague-Dawley rats. Animals were randomly divided into one of two dietary conditions: high-carbohydrate (64.0% carbohydrate by energy, n = 18) or high fat (78.1% fat by energy, n = 18). Rats in each diet condition were then allocated to one of three subgroups: control, which performed no exercise training; low-intensity (8 m/min) treadmill run training; or high-intensity (28 m/min) run training. All exercise-trained rats ran 1,000 m/session, 4 days/wk for 8 wk and were killed 48 h after the last training bout. Membrane phospholipids were extracted, and FA composition was determined in the red and white vastus lateralis muscles. Diet exerted a major influence on phospholipid FA composition, with the high-fat diet being associated with a significantly ( P < 0.01) elevated ratio of n-6/n-3 FA for both red (2.7–3.2 vs. 1.0–1.1) and white vastus lateralis muscle (2.5–2.9 vs. 1.2). In contrast, alterations in FA composition as a result of either exercise-training protocol were only minor in comparison. We conclude that, under the present experimental conditions, a change in the macronutrient content of the diet was a more potent modulator of skeletal muscle membrane phospholipid FA composition compared with either low- or high-intensity treadmill exercise training.

2004 ◽  
Vol 97 (5) ◽  
pp. 1823-1829 ◽  
Author(s):  
Todd W. Mitchell ◽  
Nigel Turner ◽  
A. J. Hulbert ◽  
Paul L. Else ◽  
John A. Hawley ◽  
...  

We have determined the effect of two exercise-training intensities on the phospholipid profile of both glycolytic and oxidative muscle fibers of female Sprague-Dawley rats using electrospray-ionization mass spectrometry. Animals were randomly divided into three training groups: control, which performed no exercise training; low-intensity (8 m/min) treadmill running; or high-intensity (28 m/min) treadmill running. All exercise-trained rats ran 1,000 m/session for 4 days/wk for 4 wk and were killed 48 h after the last training bout. Exercise training was found to produce no novel phospholipid species but was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in glycolytic (white vastus lateralis) than in oxidative (red vastus lateralis) muscle fibers. The largest observed change was a decrease of ∼20% in the abundance of 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine [PE(18:0/22:6); P < 0.001] ions in both the low- and high-intensity training regimes in glycolytic fibers. Increases in the abundance of 1-oleoyl-2-linoleoyl phopshatidic acid [PA(18:1/18:2); P < 0.001] and 1-alkenylpalmitoyl-2-linoleoyl phosphatidylethanolamine [plasmenyl PE (16:0/18:2); P < 0.005] ions were also observed for both training regimes in glycolytic fibers. We conclude that exercise training results in a remodeling of phospholipids in rat skeletal muscle. Even though little is known about the physiological or pathophysiological role of specific phospholipid molecular species in skeletal muscle, it is likely that this remodeling will have an impact on a range of cellular functions.


2021 ◽  
Vol 22 (4) ◽  
pp. 1539
Author(s):  
Paola De Sanctis ◽  
Giuseppe Filardo ◽  
Provvidenza Maria Abruzzo ◽  
Annalisa Astolfi ◽  
Alessandra Bolotta ◽  
...  

In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared—the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2019 ◽  
Vol 44 (12) ◽  
pp. 1391-1394
Author(s):  
Martin J. MacInnis ◽  
Lauren E. Skelly ◽  
F. Elizabeth Godkin ◽  
Brian J. Martin ◽  
Thomas R. Tripp ◽  
...  

The legs of 9 men (age 21 ± 2 years, 45 ± 4 mL/(kg·min)) were randomly assigned to complete 6 sessions of high-intensity exercise training, involving either one or four 5-min bouts of counterweighted, single-leg cycling. Needle biopsies from vastus lateralis revealed that citrate synthase maximal activity increased after training in the 4-bout group (p = 0.035) but not the 1-bout group (p = 0.10), with a significant difference between groups post-training (13%, p = 0.021). Novelty Short-term training using brief intense exercise requires multiple bouts per session to increase mitochondrial content in human skeletal muscle.


1996 ◽  
Vol 270 (3) ◽  
pp. E541-E544 ◽  
Author(s):  
L. M. Odland ◽  
G. J. Heigenhauser ◽  
G. D. Lopaschuk ◽  
L. L. Spriet

Previous literature has indicated that contraction-induced decreases in malonyl-CoA are instrumental in the regulation of fatty acid oxidation during prolonged submaximal exercise. This study was designed to measure malonyl-CoA in human vastus lateralis muscle at rest and during submaximal exercise. Eight males and one female cycled for 70 min (10 min at 40% and 60 min at 65% maximal O2 uptake). Needle biopsies were obtained at rest and at 10 min, 20 min, and 70 min of exercise. Malonyl-CoA content in preexercise biopsy samples determined by high-performance liquid chromatography (HPLC) was 1.53 +/- 0.18 micromol/kg dry mass (dm). Malonyl-CoA content did not change significantly during exercise (1.39 +/- 0.21 at 10 min, 1.46 +/- 0.14 at 20 min, and 1.22 +/- 0.15 micromol/kg dm at 70 min). In contrast, malonyl-CoA content determined by HPLC in perfused rat red gastrocnemius muscle decreased significantly during 20 min of stimulation at 0.7 Hz [3.44 +/- 0.54 to 1.64 +/- 0.23 nmol/g dm, (n=9)]. We conclude that human skeletal muscle malonyl-CoA content 1) is less than reported in rat skeletal muscle at rest, 2) does not decrease with prolonged submaximal exercise, and 3) is not predictive of increased fatty acid oxidation during exercise.


2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2015 ◽  
Vol 118 (8) ◽  
pp. 1040-1049 ◽  
Author(s):  
Frédéric Costes ◽  
Harry Gosker ◽  
Léonard Feasson ◽  
Marine Desgeorges ◽  
Marco Kelders ◽  
...  

Exercise training (ExTr) is largely used to improve functional capacity in patients with chronic obstructive pulmonary disease (COPD). However, ExTr only partially restores muscle function in patients with COPD, suggesting that confounding factors may limit the efficiency of ExTr. In the present study, we hypothesized that skeletal muscle adaptations triggered by ExTr could be compromised in hypoxemic patients with COPD. Vastus lateralis muscle biopsies were obtained from patients with COPD who were either normoxemic ( n = 15, resting arterial Po2 = 68.5 ± 1.5 mmHg) or hypoxemic ( n = 8, resting arterial Po2 = 57.0 ± 1.0 mmHg) before and after a 2-mo ExTr program. ExTr induced a significant increase in exercise capacity both in normoxemic and hypoxemic patients with COPD. However, ExTr increased citrate synthase and lactate dehydrogenase enzyme activities only in skeletal muscle of normoxemic patients. Similarly, muscle fiber cross-sectional area and capillary-to-fiber ratio were increased only in patients who were normoxemic. Expression of atrogenes (MuRF1, MAFbx/Atrogin-1) and autophagy-related genes (Beclin, LC3, Bnip, Gabarapl) remained unchanged in both groups. Phosphorylation of Akt (Ser473), GSK-3β (Ser9), and p70S6k (Thr389) was nonsignificantly increased in normoxemic patients in response to ExTr, but it was significantly decreased in hypoxemic patients. We further showed on C2C12 myotubes that hypoxia completely prevented insulin-like growth factor-1-induced phosphorylation of Akt, GSK-3β, and p70S6K. Together, our observations suggest a role for hypoxemia in the adaptive response of skeletal muscle of patients with COPD in an ExTr program.


1994 ◽  
Vol 267 (2) ◽  
pp. R439-R445 ◽  
Author(s):  
C. Leeuwenburgh ◽  
R. Fiebig ◽  
R. Chandwaney ◽  
L. L. Ji

Glutathione (GSH) content and antioxidant enzyme activities were investigated in skeletal muscle of young, adult, and old male Fischer 344 rats. Furthermore, the effect of 10 wk of exercise training on these antioxidant systems was evaluated at all ages. In the soleus muscle, GSH concentration increased markedly with age, with no significant change in glutathione disulfide (GSSG) content. Training caused a 30% decrease of GSH (P < 0.05) in the soleus of young rats and a reduction of the GSH-to-GSSG ratio at all ages. Activity of gamma-glutamyl transpeptidase (GGT), a key enzyme for GSH uptake by muscle, was also significantly decreased with training. GSH, GSSG, and the GSH-to-GSSG ratio were not altered with aging or training in the deep portion of vastus lateralis muscle (DVL). Activities of GSH peroxidase (GPX), GSSG reductase (GR), superoxide dismutase (SOD), catalase (CAT), and GSH sulfur-transferase were increased significantly with aging in both soleus and DVL. In DVL, training increased GPX and SOD activities in the young rats, whereas in soleus, training decreased GR and CAT activities in the adult rats and GGT and CAT activities in the old rats. Muscle lipid peroxidation was significantly increased with aging in both DVL and soleus but was not affected by training. These data indicate that aging may cause not only an overall elevation of antioxidant enzyme activities but also a fiber-specific adaptation of GSH system in skeletal muscle. Exercise training, although increasing selective antioxidant enzymes in the young rats, does not offer additional protection against oxidative stress in the senescent muscle.


2017 ◽  
Vol 103 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Timothy P Gavin ◽  
Jacob M Ernst ◽  
Hyo-Bum Kwak ◽  
Sarah E Caudill ◽  
Melissa A Reed ◽  
...  

Abstract Context Almost 50% of type 2 diabetic (T2D) patients are poorly controlled [glycated hemoglobin (HbA1c) ≥ 7%]; however, the mechanisms responsible for progressively worsening glycemic control are poorly understood. Lower skeletal muscle mitochondrial respiratory capacity is associated with low insulin sensitivity and the development of T2D. Objective We investigated if skeletal muscle insulin sensitivity (SI) was different between well-controlled T2D (WCD) and poorly controlled T2D (PCD) and if the difference was associated with differences resulting from mitochondrial respiratory function. Design Vastus lateralis muscle mitochondrial respiration, mitochondrial content, mitochondrial enzyme activity, and fatty acid oxidation (FAO) were measured. SI and the acute response to glucose (AIRg) were calculated by MINMOD analysis from glucose and insulin obtained during a modified, frequently sampled, intravenous glucose tolerance test. Results SI and AIRg were lower in PCD than WCD. Muscle incomplete FAO was greater in PCD than WCD and greater incomplete FAO was associated with lower SI and higher HbA1c. Hydroxyacyl-coenzyme A dehydrogenase expression and activity were greater in PCD than WCD. There was no difference in maximal mitochondrial respiration or content between WCD and PCD. Conclusion The current results suggest that greater skeletal muscle incomplete FAO in poorly controlled T2D is due to elevated β oxidation and is associated with worsening muscle SI.


2001 ◽  
Vol 281 (6) ◽  
pp. E1151-E1158 ◽  
Author(s):  
Sandra J. Peters ◽  
Robert A. Harris ◽  
Pengfei Wu ◽  
Tanya L. Pehleman ◽  
George J. F. Heigenhauser ◽  
...  

The increase in skeletal muscle pyruvate dehydrogenase kinase (PDK) activity was measured in skeletal muscle of six healthy males after a eucaloric high-fat/low-carbohydrate (HF/LC; 5% carbohydrate, 73% fat, and 22% protein of total energy intake) diet compared with a standardized prediet (50% carbohdyrate, 30% fat, and 21% protein). Biopsies were obtained from the vastus lateralis muscle after 3 days on the prediet ( day 0) and after 1, 2, and 3 days of the HF/LC diet. Intact mitchondria were extracted from fresh muscle and analyzed for PDK activity and Western blotting of PDK2 and PDK4 protein. A second biopsy was taken at each time point and frozen for Northern blot analysis of PDK2 and PDK4 mRNAs. PDK activity increased in a linear fashion over the 3-day HF/LC diet and was significantly higher than control by 1 day. PDK activity was 0.09 ± 0.03, 0.18 ± 0.05, 0.30 ± 0.07, and 0.37 ± 0.09 min−1 at 0, 1, 2, and 3 days, respectively. PDK4 protein and mRNA increased maximally by day 1, and PDK2 protein and mRNA were unaffected by the HF/LC diet. Resting respiratory exchange ratios decreased after 1 day of the HF/LC diet (from 0.79 ± 0.02 to 0.72 ± 0.02) and remained depressed throughout the 3-day dietary intervention (0.68 ± 0.01). The immediate shift to fat utilization was accompanied by increased blood glycerol, β-hydroxybutyrate, and plasma free fatty acid concentrations. These results suggest that the continuing increase in PDK activity over the 3-day HF/LC diet is not due to increasing PDK protein beyond 1 day. This could be due to the contribution of another isoform to the total PDK activity or to a continual increase in PDK4 or PDK2 specific activity.


Sign in / Sign up

Export Citation Format

Share Document