scholarly journals Automated image analysis of skeletal muscle fiber cross-sectional area

2013 ◽  
Vol 114 (1) ◽  
pp. 148-155 ◽  
Author(s):  
Jyothi Mula ◽  
Jonah D. Lee ◽  
Fujun Liu ◽  
Lin Yang ◽  
Charlotte A. Peterson

Morphological characteristics of muscle fibers, such as fiber size, are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle fiber cross-sectional area is still a manual or, at best, a semiautomated process. This process is labor intensive, time consuming, and prone to errors, leading to high interobserver variability. We have developed and validated an automatic image segmentation algorithm and compared it directly with commercially available semiautomatic software currently considered state of the art. The proposed automatic segmentation algorithm was evaluated against a semiautomatic method with manual annotation using 35 randomly selected cross-sectional muscle histochemical images. The proposed algorithm begins with ridge detection to enhance the muscle fiber boundaries, followed by robust seed detection based on concave area identification to find initial seeds for muscle fibers. The final muscle fiber boundaries are automatically delineated using a gradient vector flow deformable model. Our automatic approach is accurate and represents a significant advancement in efficiency; quantification of fiber area in muscle cross sections was reduced from 25–40 min/image to 15 s/image, while accommodating common quantification obstacles including morphological variation (e.g., heterogeneity in fiber size and fibrosis) and technical artifacts (e.g., processing defects and poor staining quality). Automatic quantification of muscle fiber cross-sectional area using the proposed method is a powerful tool that will increase sensitivity, objectivity, and efficiency in measuring muscle adaptation.

2013 ◽  
Vol 115 (11) ◽  
pp. 1714-1724 ◽  
Author(s):  
Fujun Liu ◽  
Christopher S. Fry ◽  
Jyothi Mula ◽  
Janna R. Jackson ◽  
Jonah D. Lee ◽  
...  

Skeletal muscle is an exceptionally adaptive tissue that compromises 40% of mammalian body mass. Skeletal muscle functions in locomotion, but also plays important roles in thermogenesis and metabolic homeostasis. Thus characterizing the structural and functional properties of skeletal muscle is important in many facets of biomedical research, ranging from myopathies to rehabilitation sciences to exercise interventions aimed at improving quality of life in the face of chronic disease and aging. In this paper, we focus on automated quantification of three important morphological features of muscle: 1) muscle fiber-type composition; 2) muscle fiber-type-specific cross-sectional area, and 3) myonuclear content and location. We experimentally prove that the proposed automated image analysis approaches for fiber-type-specific assessments and automated myonuclei counting are fast, accurate, and reliable.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 354-354
Author(s):  
Maslyn A Greene ◽  
Aliute Udoka ◽  
Rhonda Powell ◽  
Rooksana Noorai ◽  
Terri Bruce ◽  
...  

Abstract The objective of this study was to evaluate the miRNA transcriptome and muscle fiber characteristics of lambs from ewes consuming endophyte-infected tall fescue (E+) seed during two stages of gestation at two animal ages. Pregnant Suffolk ewes (yr 1 n = 36; yr 2 n = 60) were randomly assigned to one of two gestational treatments: E+ seed (1.77 mg/hd/d of ergovaline/ergovalinine) during mid- (gd 35 - 85; MID) or late-gestation (gd 86 – 133/parturition; LATE). Longissimus muscle samples (n = 3/E+ treatment/time) were collected from fetuses on gd 133 (FETAL; expt. 1) or from wethers after finishing to market weight (MKT; expt. 2) from ewes from MID and LATE E+ treatments. Data were analyzed as a 2 x 2 factorial with E+ treatment (MID or LATE), time (FETAL or MKT), and the two-way interaction in the model. Exposure to E+ fescue seed during LATE gestation reduced (P = 0.03) cross-sectional area of Type II muscle fibers at MKT but not at FETAL. Cross-sectional area of Type II muscle fibers were larger (P < 0.05) at MKT than FETAL. Animal age influenced miRNA expression with 120 miRNA differentially expressed. miRNA-22-3p and -29a were down regulated (P < 0.001; > -5 log fold change) with animal age; whereas miR-3958-3p, -410-3p, -299-5p and -487b-3p (P < 0.0001; > 3 log fold change) were up-regulated. Exposure to E+ during MID or LATE gestation did not alter miRNA expression. Muscle fiber hypertrophy increased from FETAL to MKT age altered the expression of miRNA in longissimus muscle.


1998 ◽  
Vol 84 (1) ◽  
pp. 318-326 ◽  
Author(s):  
Aladin M. Boriek ◽  
Charles C. Miller ◽  
Joseph R. Rodarte

Boriek, Aladin M., Charles C. Miller III, and Joseph R. Rodarte. Muscle fiber architecture of the dog diaphragm. J. Appl. Physiol. 84(1): 318–326, 1998.—Previous measurements of muscle thickness and length ratio of costal diaphragm insertions in the dog (A. M. Boriek and J. R. Rodarte. J. Appl. Physiol. 77: 2065–2070, 1994) suggested, but did not prove, discontinuous muscle fiber architecture. We examined diaphragmatic muscle fiber architecture using morphological and histochemical methods. In 15 mongrel dogs, transverse sections along the length of the muscle fibers were analyzed morphometrically at ×20, by using the BioQuant System IV software. We measured fiber diameters, cross-sectional fiber shapes, and cross-sectional area distributions of fibers. We also determined numbers of muscle fibers per cross-sectional area and ratio of connective tissue to muscle fibers along a course of the muscle from near the chest wall (CW) to near the central tendon (CT) for midcostal left and right hemidiaphragms, as well as ventral, middle, and dorsal regions of the left costal hemidiaphragm. In six other mongrel dogs, the macroscopic distribution of neuromuscular junctions (NMJ) on thoracic and abdominal diaphragm surfaces was determined by staining the intact diaphragmatic muscle for acetylcholinesterase activity. The average major diameter of muscle fibers was significantly smaller, and the number of fibers was significantly larger midspan between CT and CW than near the insertions. The ratio of connective tissues to muscle fibers was largest at CW compared with other regions along the length of the muscle. The diaphragm is transversely crossed by multiple scattered NMJ bands with fairly regular intervals offset in adjacent strips. Muscle fascicles traverse two to five NMJ, consistent with fibers that do not span the entire fascicle from CT to CW. These results suggest that the diaphragm has a discontinuous fiber architecture in which contractile forces may be transmitted among the muscle fibers through the connective tissue adjacent to the fibers.


1996 ◽  
Vol 81 (1) ◽  
pp. 145-151 ◽  
Author(s):  
D. L. Allen ◽  
W. Yasui ◽  
T. Tanaka ◽  
Y. Ohira ◽  
S. Nagaoka ◽  
...  

The effects of 14 days of spaceflight on myonuclear number, fiber size, and myosin heavy chain (MHC) expression in isolated rat soleus muscle fiber segments were studied. Single soleus muscle fibers from rats flown on the Spacelab Life Sciences-2 14-day mission were compared with those from age-matched ground-based control rats by using confocal microscopy and gel electrophoresis. Spaceflight resulted in a significant reduction in the number of fibers expressing type I MHC and an increase in the number of fibers expressing type IIx or IIa MHC. Space-flight also resulted in an increase in the percentage of fibers coexpressing more than one MHC and in the reexpression of the neonatal isoform of MHC in some fibers. Fiber cross-sectional area was significantly reduced in pure type I MHC-expressing fibers and in fibers coexpressing type I+II MHC but not in fibers expressing one or more type II MHC in the flight rats. The number of myonuclei per millimeter was significantly reduced in type I MHC-expressing fibers from the flight rats but was not significantly different in type I+II and type II MHC-coexpressing fibers. Fibers expressing neonatal MHC were similar in size to control fibers but had significantly fewer myonuclei per millimeter than flight fibers not expressing neonatal MHC. In type I MHC-expressing fibers, the reduction in fiber cross-sectional area was greater than the reduction in myonuclear number; thus the average cytoplasmic volume per myonucleus was significantly lower in flight than in control fibers. The reduction in both myonuclear number and fiber size of fibers expressing type I MHC after 14 days of spaceflight supports the hypothesis that changes in the number of myonuclei may be a contributing factor to the reduction in fiber size associated with chronic unloading of the musculature.


2006 ◽  
Vol 6 ◽  
pp. 542-550 ◽  
Author(s):  
Eli Carmeli ◽  
Tal Gal Haimovitch

The effect of 2-week, high-intensity running and a 2-week immobilization on muscle fiber type composition of the plantaris muscle from 18 female, 6-month-old Wistar rats (running, n = 6; immobilization, n = 6; sedentary control, n = 6) was bio- and histochemically investigated. The high-intensity treadmill running began with 20 min (32 m/min, 0% gradient, 75% VO2max), up to 50 min/day. Right hind limbs were immobilized by an external fixation procedure for 13 days. Muscle mass of the plantaris muscle in the immobilized groups was reduced by 16% in comparison with the sedentary control group. High-intensity running and immobilization increased both mRNA and protein levels of matrix metalloproteinase type 2 (MMP-2) in plantaris. Running and immobilization decreased the percentages of transverse sectional area of fast-twitch glycolytic (FG) type IIb fibers, running increased relative cross-sectional area of fast-twitch oxidative glycolytic (FOG) type IIa muscle fibers, whereas immobilization increased relative cross-sectional area of slow-twitch oxidative (SO) muscle fibers (type I). Our results suggest that both high-intensity running and immobilization are enough to induce overwhelming changes in plantaris.


1988 ◽  
Vol 255 (1) ◽  
pp. C43-C50 ◽  
Author(s):  
T. P. Martin ◽  
S. Bodine-Fowler ◽  
R. R. Roy ◽  
E. Eldred ◽  
V. R. Edgerton

The variability among single muscle fiber enzymatic activities and fiber size within a motor unit was studied in the cat tibialis anterior (TA) muscle. Fourteen units were isolated for physiological testing using standard ventral root filament stimulation techniques, and the muscle fibers of these units were identified by glycogen depletion. The cross-sectional areas, succinate dehydrogenase (SDH) and alpha-glycerolphosphate dehydrogenase (GPD) activities, and the relative alkaline myofibrillar adenosine triphosphate staining densities of a sample of glycogen-depleted and -nondepleted muscle fibers were determined using quantitative histochemical techniques. Each of the unit types previously identified to be present in the TA, based on physiological criteria, were represented by the sample population. The variability among the fibers of a unit was significantly more than the variability among repeated measures on a single fiber for cross-sectional area and SDH and GPD activities. The mean coefficients of variation for SDH and GPD activity within motor unit fibers were 29 and 56%, respectively, whereas the variability between fibers of different units within a muscle was significantly greater (53 and 69%, respectively). Additionally, the mean coefficient of variation for cross-sectional area among motor unit fibers was less than that among fibers not depleted of glycogen (25 vs. 46%). These data suggest that although there is clear evidence for some level of neural control of the properties of a muscle unit (variation within a unit was less than the variation across units), this control is not complete, since the variability among fibers of a single unit was significantly more than the variability found between repeated measurements on a single fiber.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Alex M. Noonan ◽  
Derek P. Zwambag ◽  
Nicole Mazara ◽  
Erin Weersink ◽  
Geoffrey A. Power ◽  
...  

Abstract Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol. SDS-PAGE classified fibers as types 1 or 2. While there was a difference in normalized stiffness between fiber types (p = 0.0019), an unexpected inverse relationship was found between fiber diameter and normalized stiffness (r = −0.64; p < 0.001). As fiber type and diameter are not independent, a one-way analysis of covariance (ANCOVA) including fiber diameter as a covariate was run; this eliminated the effect of fiber type on normalized stiffness (p = 0.1935). To further explore the relationship between fiber size and elastic properties, we tested whether stiffness was linearly related to fiber cross-sectional area, as would be expected for a homogenous material. Passive stiffness was not linearly related to fiber area (p < 0.001), which can occur if single muscle fibers are better represented as composite materials. The rule of mixtures for composite materials was used to explore whether the presence of a stiff perimeter-based fiber component could explain the observed results. The model (R2 = 0.38) predicted a perimeter-based normalized stiffness of 8800 ± 2600 kPa/μm, which is within the range of basement membrane moduli reported in the literature.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 44
Author(s):  
Mario Guadalupe-Daqui ◽  
Mandi Chen ◽  
Katherine A. Thompson-Witrick ◽  
Andrew J. MacIntosh

The kinetics and success of an industrial fermentation are dependent upon the health of the microorganism(s) responsible. Saccharomyces sp. are the most commonly used organisms in food and beverage production; consequently, many metrics of yeast health and stress have been previously correlated with morphological changes to fermentations kinetics. Many researchers and industries use machine vision to count yeast and assess health through dyes and image analysis. This study assessed known physical differences through automated image analysis taken throughout ongoing high stress fermentations at various temperatures (30 °C and 35 °C). Measured parameters included sugar consumption rate, number of yeast cells in suspension, yeast cross-sectional area, and vacuole cross-sectional area. The cell morphological properties were analyzed automatically using ImageJ software and validated using manual assessment. It was found that there were significant changes in cell area and ratio of vacuole to cell area over the fermentation. These changes were temperature dependent. The changes in morphology have implications for rates of cellular reactions and efficiency within industrial fermentation processes. The use of automated image analysis to quantify these parameters is possible using currently available systems and will provide additional tools to enhance our understanding of the fermentation process.


Author(s):  
Jennifer E. Gilda ◽  
Joon-Hyuk Ko ◽  
Aviv-Yvonne Elfassy ◽  
Nadav Tropp ◽  
Anna Parnis ◽  
...  

The size and shape of skeletal muscle fibers are affected by various physiological and pathological conditions, such as muscle atrophy, hypertrophy, regeneration, and dystrophies. Hence, muscle fiber cross-sectional area (CSA) is an important determinant of muscle health and plasticity. We adapted the Imaris software to automatically segment muscle fibers based on fluorescent labeling of the plasma membrane, and measure muscle fiber CSA. Analysis of muscle cross sections by the Imaris semi-automated and manual approaches demonstrated a similar decrease in CSA of atrophying muscles from fasted mice compared with fed controls. In addition, we previously demonstrated that downregulation of the Ca2+-specific protease calpain-1 attenuates muscle atrophy. Accordingly, both the Imaris semi-automated and manual approaches showed a similar increase in CSA of fibers expressing calpain-1 shRNA compared with adjacent non-transfected fibers in the same muscle cross section. Although both approaches seem valid for measurements of muscle fiber size, the manual marking method is less preferable because it is highly time-consuming, subjective, and limits the number of cells that can be analyzed. The Imaris semi-automated approach is user-friendly, requires little training or optimization, and can be used to efficiently and accurately mark thousands of fibers in a short period of time. As a novel addition to the commonly used statistics, we also describe statistical tests that quantify the strength of an effect on fiber size, enabling detection of significant differences between skewed distributions that would otherwise not be detected using typical methods.


1987 ◽  
Vol 57 (6) ◽  
pp. 1730-1745 ◽  
Author(s):  
S. C. Bodine ◽  
R. R. Roy ◽  
E. Eldred ◽  
V. R. Edgerton

In 11 tibialis anterior muscles of the cat, a single motor unit was characterized physiologically and subsequently depleted of its glycogen through repetitive stimulation of an isolated ventral root filament. Muscle cross sections were stained for glycogen using a periodic acid-Schiff reaction, and single-fiber optical densities were determined to identify those fibers belonging to the stimulated motor unit. Innervation ratios were determined by counting the total number of muscle fibers in a motor unit in sections taken through several levels of the muscle. The average innervation ratios for the fast, fatigueable (FF) and fast, fatigue-resistant (FR) units were similar. However, the slow units (S) contained 61% fewer fibers than the fast units (FF and FR). Muscle fibers belonging to S and FR units were similar in cross-sectional area, whereas fibers belonging to FF units were significantly larger than fibers belonging to either S or FR units. Additionally, muscle fibers innervated by a single motoneuron varied by two- to eightfold in cross-sectional area. Specific tensions, based on total cross-sectional area determined by summing the areas of all muscle fibers of each unit, showed a modest difference between fast and slow units, the means being 23.5 and 17.2 N X cm-2, respectively. Variations in maximum tension among units could be explained principally by innervation ratio, although fiber cross-sectional area and specific tension did contribute to differences between unit types.


Sign in / Sign up

Export Citation Format

Share Document