Analysis of lung parenchyma as a parametric porous medium

2006 ◽  
Vol 101 (3) ◽  
pp. 926-933 ◽  
Author(s):  
Boris Lande ◽  
Wayne Mitzner

The dynamic behavior of the lung in health and disease depends on its viscoelastic properties. To better understand these properties, several mathematical models have been utilized by many investigators. In the present work, we present a new approach that characterizes the dynamics of gas flow into a viscoelastic porous medium that models the lung structure. This problem is considered in terms of the lung input impedance on a macro level and parenchymal tissue impedance on the level of an alveolar wall. We start from a basic theoretical analysis in which macroscopic tissue deformations are represented in accordance with the linearized Navier-Stokes equations. This approach has strong theoretical underpinnings in other situations but has not been applied to analyze the impedance of the inflated lung. Our analysis provides a theoretical basis for analyzing the interaction between flow into the lungs as a biophysical diffusion process and parenchymal viscoelasticity described phenomenologically, within the frameworks of standard viscoelasticity and structural damping. This lung impedance incorporates parameters of porosity, permeability, and viscoelasticity on micro and macro levels of parenchymal tissue. The analysis shows the theoretical basis of the transformation from the impedance of alveolar walls or isolated tissue strips to that of the intact parenchyma. We also show how the loading impedance at the lung boundary may have a significant impact on the dynamic behavior of whole lung viscoelasticity. Our analysis may be useful in directing specific tests of different models and for analyzing experimental measurements of viscoelastic parameters of lung material under normal and pathological conditions.

Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


2016 ◽  
Vol 792 ◽  
pp. 5-35 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Alessandro Bottaro

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.


Author(s):  
Надежда Петровна Скибина

Проведено численное исследование нестационарного турбулентного сверхзвукового течения в камере сгорания прямоточного воздушно-реактивного двигателя. Описана методика экспериментального измерения температуры на стенке осесимметричного канала в камере сгорания двигателя. Математическое моделирование обтекания исследуемой модели двигателя проводилось для скоростей набегающего потока M = 5 ... 7. Начальные и граничные условия задачи соответствовали реальному аэродинамическому эксперименту. Проанализированы результаты численного расчета. Рассмотрено изменение распределения температуры вдоль стенки канала с течением времени. Проведена оценка согласованности полученных экспериментальных данных с результатами математического моделирования. Purpose. The aim of this study is a numerical simulation of unsteady supersonic gas flow in a working path of ramjet engine under conditions identical to aerodynamic tests. Free stream velocity corresponding to Mach numbers M=5 ... 7 are considered. Methodology. Presented study addresses the methods of physical and numerical simulation. The probing device for thermometric that allows to recording the temperature values along the wall of internal duct was proposed. To describe the motion of a viscous heat-conducting gas the unsteady Reynolds averaged Navier - Stokes equations are considered. The flow turbulence is accounted by the modified SST model. The problem was solved in ANSYS Fluent using finite-volume method. The initial and boundary conditions for unsteady calculation are set according to conditions of real aerodynamic tests. The coupled heat transfer for supersonic flow and elements of ramjet engine model are realized by setting of thermophysical properties of materials. The reliability testing of numerical simulation has been made to compare the results of calculations and the data of thermometric experimental tests. Findings. Numerical simulation of aerodynamic tests for ramjet engine was carried out. The agreement between the results of numerical calculations and experimental measurements for the velocity in the channel under consideration was obtained; the error was shown to be 2%. The temperature values were obtained in the area of contact of the supersonic flow with the surface of the measuring device for the external incident flow velocities for Mach numbers M = 5 ... 7. The process of heating the material in the channel that simulated the section of the engine combustion chamber was analyzed. The temperature distribution was studied depending on the position of the material layer under consideration relative to the contact zone with the flow. Value. In the course of the work, the fields of flow around the model of a ramjet engine were obtained, including the region of supersonic flow in the inner part of axisymmetric channel. The analysis of the temperature fields showed that to improve the quality of the results, it is necessary to take into account the depth of the calorimetric sensor. The obtained results will be used to estimate the time of interaction of the supersonic flow with the fuel surface required to reach the combustion temperature.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


1931 ◽  
Vol 31 (1) ◽  
pp. 96-123 ◽  
Author(s):  
F. Haynes

The following dusts produce a fibrosis in the guinea-pig's lung, and are therefore to be classed as dusts whose inhalation in industry would be attended by risks of pneumoconiosis. The most deadly of all dusts examined was precipitated silica. Less dangerous, but all producing fibrosis, were the following, arranged in order of decreasing toxicity: flint, slate, aluminium hydroxide, precipitated chalk, magnesium carbonate and carborundum. In the concentrations used in the experiments calcspar and emery were border-line dusts, indicating that their inhalation in any considerable quantity would cause fibrosis. Wood charcoal inhaled in large amount produces a slight fibrosis, and must, therefore, be placed on the “dangerous” list. Colloidal coal, when inhaled in massive amounts, is potentially dangerous, while shale under similar conditions is rather more dangerous.Haematite, talc, and molecular mixtures of soluble silica with aluminium hydroxide and magnesium carbonate respectively were not found to cause any permanent lesions in the lung.The deductions to be drawn from this work are:1. All inhaled particles are rapidly ingested by certain individual cells belonging to the alveolar epithelium.2. These cells (dust cells or phagocytes) remain in the lung parenchyma until they have ingested an amount of dust constituting the cell's saturation load. This load varies with different dusts.3. A cell having attained its saturation load becomes sooner or later detached from the alveolar wall and either migrates into the lymphatics or becomes free in the alveolus. In the former case it passes into the pulmonary lymphoid tissue and thence to the bronchial lymph glands. In the latter case it passes up the bronchial tree to be either coughed out or swallowed.4. Dust cells which speedily leave the alveolar wall are principally eliminated by the bronchi.5. In the case of a dust cell being eliminated from the lung via the lymphatics, it may be arrested in the periatrial lymphatics on account of its bulk. The dam thus produced offers obstruction to the passage of other dust cells shed into the alveoli. Groups of free dust cells in the obstructed alveoli form plaques, which degenerate and liberate their dust. This is again ingested, and the irritation caused by such a process may lead to fibrosis.6. The continued presence of dust-laden cells in the lymphatics may set up a foreign body irritation, with resulting fibrosis.7. Most inhaled particles contain soluble matter to at least a very small extent. The solute may be either harmlessly active or toxic. If the former, the cell is stimulated to detach itself from the alveolar wall, and so remove the dust. If the latter, the solute effects the viability of the phagocyte, which becomes less able to detach itself. At the same time the solute diffuses into the neighbouring tissues, with irritation to them, and consequent fibrosis.8. The more soluble form of a substance causes greater pulmonary damage than the less soluble. The solute, therefore, plays a large part in the determination of damage.9. While many dusts cause pulmonary fibrosis, silica is the dust par excellence predisposing to tuberculosis. This is doubtless due to its influence in forming a medium suitable not only for the survival but the proliferation of the tubercle bacillus in the lung (Kettle, private communication). The harmful effects of soluble silica may be neutralised by simultaneous administration of basic dusts such as aluminium hydroxide or magnesium carbonate, though the latter are themselves harmful when inhaled alone. It is suggested that their respective solutes combine to form monosilicate. Monosilicates do not appear to have any harmful effect on the lung.10. Heavy inhalations of any dust are liable to cause pulmonary damage.11. The intensity of the initial pulmonary reaction to a dust is very generally in inverse ratio to the degree of eventual damage caused by the dust.


Author(s):  
Margarita Baeva ◽  
Tao Zhu ◽  
Thorben Kewitz ◽  
Holger Testrich ◽  
Rüdiger Foest

AbstractA two-dimensional and stationary magnetohydrodynamic model of a plasma spray torch operated with argon is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier–Stokes equations for a laminar and compressible flow are solved in terms of low and high Mach number numerical approaches. The results show that the Mach number can reach values close to one. Simulations are performed for electric currents of 600 A and 800 A, and gas flow rates of 40, 60, and 80 NLPM. The plasma parameters obtained by the two approaches differ, and the differences become more pronounced for higher currents and gas flow rates. The arc voltage, the electric power, and the thermal efficiency from both the low and high Mach number models of the plasma agree well with experimental findings for a current of 600 A and a flow rate of 40 NLPM. For higher currents and gas flow rates, the results of the low and high Mach number models gradually differ and underline the greater appropriateness of the high Mach number model.


Author(s):  
M Sajedi ◽  
SA Gandjalikhan Nassab ◽  
E Jahanshahi Javaran

Based on an effective energy conversion method between flowing gas enthalpy and thermal radiation, a three-layered type of porous heat exchanger (PHE) has been proposed. The PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of gas flow converts to thermal radiation and the opposite process happens in HR1 and HR2. In each section, a 2-D rectangular porous medium which is assumed to be absorbing, emitting and scattering is presented. For theoretical analysis of the PHE, the gas and solid phases are considered in non-local thermal equilibrium and separate energy equations are used for these two phases. Besides, in the gas flow simulation, the Fluent code is used to obtain the velocity distribution in the PHE from inlet to outlet section. For thermal analysis of the PHE, the coupled energy equations for gas and porous layer at each section are numerically solved using the finite difference method. In the computation of radiative heat flux distribution, the radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The effects of scattering albedo, optical thickness, particle size of porous medium and inlet gas temperature on the efficiency of PHE are explored. Numerical results show that this type of PHE has high efficiency especially when the porous layers have high optical thickness. The present results are compared with those reported theoretically by other investigators and reasonable agreement is found.


2021 ◽  
pp. 16-21
Author(s):  
A.M. Mamed-zade ◽  

The paper reviews the fluid and gas flow in the porous medium considering electro-kinetic phenomena – electro-phoresis and electro-osmosis, as well as the charges associated with them. These phenomena are due to the double electric layer on the border of division of disperse system phases. Electro-kinetic phenomena are follows: electro-phoresis, electro-osmosis, flow potential (Quincke effect) and sedimentation potential (Dorn effect). The formulas for the motion of fluid and gas in porous medium considering the properties of porous medium and saturating them fluids, as well as the interaction between them, which is described with electro-kinematic phenomena, have been obtained. Obtained formulas have been evaluated via the results of laboratory researches.


2020 ◽  
Vol 8 (2) ◽  
pp. 87 ◽  
Author(s):  
Paran Pourteimouri ◽  
Kourosh Hejazi

An integrated two-dimensional vertical (2DV) model was developed to investigate wave interactions with permeable submerged breakwaters. The integrated model is capable of predicting the flow field in both surface water and porous media on the basis of the extended volume-averaged Reynolds-averaged Navier–Stokes equations (VARANS). The impact of porous medium was considered by the inclusion of the additional terms of drag and inertia forces into conventional Navier–Stokes equations. Finite volume method (FVM) in an arbitrary Lagrangian–Eulerian (ALE) formulation was adopted for discretization of the governing equations. Projection method was utilized to solve the unsteady incompressible extended Navier–Stokes equations. The time-dependent volume and surface porosities were calculated at each time step using the fraction of a grid open to water and the total porosity of porous medium. The numerical model was first verified against analytical solutions of small amplitude progressive Stokes wave and solitary wave propagation in the absence of a bottom-mounted barrier. Comparisons showed pleasing agreements between the numerical predictions and analytical solutions. The model was then further validated by comparing the numerical model results with the experimental measurements of wave propagation over a permeable submerged breakwater reported in the literature. Good agreements were obtained for the free surface elevations at various spatial and temporal scales, velocity fields around and inside the obstacle, as well as the velocity profiles.


Author(s):  
Zhangming Wu ◽  
Xianghong Ma

The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document