scholarly journals Single cell and ensemble activity of lumbar intermediate and ventral horn interneurons in the spinal air-stepping cat

Author(s):  
Chantal McMahon ◽  
David P Kowalski ◽  
Alexander J Krupka ◽  
Michel A Lemay

We explored the relationship between population interneuronal network activation and motor output in the adult, in-vivo, air stepping, spinal cat. By simultaneously measuring the activity of large numbers of spinal interneurons, we explored ensembles of coherently firing interneurons and their relation to motor output. Additionally, the networks were analyzed in relation to their spatial distribution along the lumbar enlargement for evidence of localized groups driving particular phases of the locomotor step cycle. We simultaneously recorded hindlimb EMG activity during stepping and extracellular signals from 128 channels across two polytrodes inserted within lamina V-VII of two separate lumbar segments. Results indicated that spinal interneurons participate in one of two ensembles that are highly correlated with the flexor or the extensor muscle bursts during stepping. Interestingly, less than half of the isolated single units were significantly unimodally tuned during the step cycle while >97% of the single units of the ensembles were significantly correlated with muscle activity. These results show the importance of population scale analysis in neural studies of behavior as there is a much greater correlation between muscle activity and ensemble firing than between muscle activity and individual neurons. Finally, we show that there is no correlation between interneurons' rostrocaudal locations within the lumbar enlargement and their preferred phase of firing or ensemble participation. These findings indicate that spinal interneurons of lamina V-VII encoding for different phases of the locomotor cycle are spread throughout the lumbar enlargement in the adult spinal cord.

2005 ◽  
Vol 94 (6) ◽  
pp. 4455-4470 ◽  
Author(s):  
Ari Berkowitz

Overlapping neuronal networks have been shown to generate a variety of behaviors or motor patterns in invertebrates, but the evidence for this is more circumstantial in vertebrates. The turtle spinal cord can produce multiple forms of hindlimb scratching movements as well as hindlimb withdrawal, but it is still uncertain whether individual spinal cord interneurons contribute to the motor output for more than one type of limb motor pattern. In this study, individual spinal cord interneurons were recorded intracellularly in vivo in spinal immobilized turtles, and, after characterization, were filled with Neurobiotin. Interneurons that were rhythmically activated during multiple forms of ipsilateral fictive hindlimb scratching often had axon-terminal arborizations in the ventral horn of the spinal cord hindlimb enlargement. This provides some of the strongest evidence to date that interneurons involved in multiple forms of scratching contribute directly to hindlimb motor output. Moreover, most of these interneurons were also active during contralateral fictive scratching and during ipsilateral fictive hindlimb withdrawal, suggesting that they contribute to motor output for these additional behaviors as well. Such interneurons may provide the cellular basis for the contralateral contributions to ipsilateral scratching that have been demonstrated previously. Taken together, these findings suggest that diverse vertebrate limb movements are produced by spinal cord interneuronal networks that include some shared components.


2008 ◽  
Vol 99 (6) ◽  
pp. 2887-2901 ◽  
Author(s):  
Ari Berkowitz

Distinct types of rhythmic movements that use the same muscles are typically generated largely by shared multifunctional neurons in invertebrates, but less is known for vertebrates. Evidence suggests that locomotion and scratching are produced partly by shared spinal cord interneuronal circuity, although direct evidence with intracellular recording has been lacking. Here, spinal interneurons were recorded intracellularly during fictive swimming and fictive scratching in vivo and filled with Neurobiotin. Some interneurons that were rhythmically activated during both swimming and scratching had axon terminal arborizations in the ventral horn of the hindlimb enlargement, indicating their likely contribution to hindlimb motor outputs during both behaviors. We previously described a morphological group of spinal interneurons (“transverse interneurons” or T neurons) that were rhythmically activated during all forms of fictive scratching at higher peak firing rates and with larger membrane potential oscillations than scratch-activated spinal interneurons with different dendritic orientations. The current study demonstrates that T neurons are activated during both swimming and scratching and thus are components of the shared circuitry. Many spinal interneurons activated during fictive scratching are also activated during fictive swimming (scratch/swim neurons), but others are suppressed during swimming (scratch-specialized neurons). The current study demonstrates that some scratch-specialized neurons receive strong and long-lasting hyperpolarizing inhibition during fictive swimming and are also morphologically distinct from T neurons. Thus this study indicates that locomotion and scratching are produced by a combination of shared and dedicated interneurons whose physiological and morphological properties are beginning to be revealed.


2011 ◽  
Vol 106 (6) ◽  
pp. 2794-2795
Author(s):  
Shawn Hochman

Recently, Andreas Husch, Nathan Cramer, and Ronald M. Harris-Warrick achieved a remarkable breakthrough in patch-clamp recordings of ventral horn neurons in the adult spinal cord slice preparation. This landmark study that breaks the “age barrier” is titled “Long-duration perforated patch recordings from spinal interneurons of adult mice” (Husch et al., in press). In it, the authors demonstrate the unprecedented ability to undertake day-long (up to 12 h), and utterly stable perforated patch recordings. A description of the methodology is detailed in their paper. Here, I give a brief overview before providing context to this extraordinary achievement.


1997 ◽  
Vol 77 (5) ◽  
pp. 2446-2465 ◽  
Author(s):  
Gail L. Widener ◽  
Paul D. Cheney

Widener, Gail L. and Paul D. Cheney. Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey. J. Neurophysiol. 77: 2446–2465, 1997. It is well known that electrical stimulation of primary somatosensory cortex (SI) evokes movements that resemble those evoked from primary motor cortex. These findings have led to the concept that SI may possess motor capabilities paralleling those of motor cortex and speculation that SI could function as a robust relay mediating motor responses from central and peripheral inputs. The purpose of this study was to rigorously examine the motor output capabilities of SI areas with the use of the techniques of spike- and stimulus-triggered averaging of electromyographic (EMG) activity in awake monkeys. Unit recordings were obtained from primary motor cortex and SI areas 3a, 3b, 1, and 2 in three rhesus monkeys. Spike-triggered averaging was used to assess the output linkage between individual cells and motoneurons of the recorded muscles. Cells in motor cortex producing postspike facilitation (PSpF) in spike-triggered averages of rectified EMG activity were designated corticomotoneuronal (CM) cells. Motor output efficacy was also assessed by applying stimuli through the microelectrode and computing stimulus-triggered averages of rectified EMG activity. One hundred seventy-one sites in motor cortex and 68 sites in SI were characterized functionally and tested for motor output effects on muscle activity. The incidence, character, and magnitude of motor output effects from SI areas were in sharp contrast to effects from CM cell sites in primary motor cortex. Of 68 SI cells tested with spike-triggered averaging, only one area 3a cell produced significant PSpF in spike-triggered averages of EMG activity. In comparison, 20 of 171 (12%) motor cortex cells tested produced significant postspike effects. Single-pulse intracortical microstimulation produced effects at all CM cell sites in motor cortex but at only 14% of SI sites. The large fraction of SI effects that was inhibitory represented yet another marked difference between CM cell sites in motor cortex and SI sites (25% vs 93%). The fact that motor output effects from SI were frequently absent or very weak and predominantly inhibitory emphasizes the differing motor capabilities of SI compared with primary motor cortex.


2013 ◽  
Vol 33 (8) ◽  
pp. 1148-1152 ◽  
Author(s):  
Yicheng Xie ◽  
Shangbin Chen ◽  
Eitan Anenberg ◽  
Timothy H Murphy

Recently we have shown that despite reperfusion, sensory processing exhibits persistent deficits after global ischemia in a mouse in vivo model. We now address how motor output, specifically cortically evoked muscle activity, stimulated by channelrhodopsin-2 is affected by global ischemia and reperfusion. We find that the light-based optogenetic motor map recovers to 80% within an hour. Moreover, motor output recovers relatively faster and more completely than the sensory processing after 5-minute period of global ischemia. Our results suggest a differential sensitivity of sensory and motor systems to the effects of global ischemia and reperfusion that may have implications for rehabilitation.


2008 ◽  
Vol 99 (6) ◽  
pp. 2946-2955 ◽  
Author(s):  
Noritaka Kawashima ◽  
Daichi Nozaki ◽  
Masaki O. Abe ◽  
Kimitaka Nakazawa

Direct evidence supporting the contribution of upper limb motion on the generation of locomotive motor output in humans is still limited. Here, we aimed to examine the effect of upper limb motion on locomotor-like muscle activities in the lower limb in persons with spinal cord injury (SCI). By imposing passive locomotion-like leg movements, all cervical incomplete ( n = 7) and thoracic complete SCI subjects ( n = 5) exhibited locomotor-like muscle activity in their paralyzed soleus muscles. Upper limb movements in thoracic complete SCI subjects did not affect the electromyographic (EMG) pattern of the muscle activities. This is quite natural since neural connections in the spinal cord between regions controlling upper and lower limbs were completely lost in these subjects. On the other hand, in cervical incomplete SCI subjects, in whom such neural connections were at least partially preserved, the locomotor-like muscle activity was significantly affected by passively imposed upper limb movements. Specifically, the upper limb movements generally increased the soleus EMG activity during the backward swing phase, which corresponds to the stance phase in normal gait. Although some subjects showed a reduction of the EMG magnitude when arm motion was imposed, this was still consistent with locomotor-like motor output because the reduction of the EMG occurred during the forward swing phase corresponding to the swing phase. The present results indicate that the neural signal induced by the upper limb movements contributes not merely to enhance but also to shape the lower limb locomotive motor output, possibly through interlimb neural pathways. Such neural interaction between upper and lower limb motions could be an underlying neural mechanism of human bipedal locomotion.


2006 ◽  
Vol 95 (5) ◽  
pp. 2821-2831 ◽  
Author(s):  
Ari Berkowitz ◽  
Gina L. C. Yosten ◽  
R. Mark Ballard

It has been difficult to predict the behavioral roles of vertebrate CNS neurons based solely on their morphologies, especially for the neurons that control limb movements in adults. We examined the morphologies of spinal interneurons involved in limb movement control, using intracellular recording followed by Neurobiotin injection in the in vivo adult turtle spinal cord preparation. We report here the first description of a class of spinal interneurons whose somato-dendritic morphologies predict their robust activity during multiple forms of ipsilateral and contralateral fictive hindlimb scratching and fictive hindlimb withdrawal. These “transverse interneurons” or T cells have a mediolaterally elongated soma and a simple dendritic tree that is extensive in the transverse plane but restricted rostrocaudally. During fictive scratching, these cells display strong rhythmic modulation with higher peak firing rates than other scratch-activated interneurons. These higher peak firing rates are at least partly caused by T cells having larger phase-locked membrane potential oscillations and narrower action potentials with briefer afterhyperpolarizations than other scratch-activated interneurons. Many T cells have axon terminal arborizations in the ventral horn of the spinal cord hindlimb enlargement. Identification of this morphological and physiological class of spinal interneurons should facilitate further exploration of the mechanisms of hindlimb motor pattern selection and generation.


2000 ◽  
Vol 203 (3) ◽  
pp. 617-629 ◽  
Author(s):  
D.J. Coughlin

Steady swimming in fishes is powered by the aerobic or red muscle, but there are conflicting theories on the relative roles of the anterior and posterior red muscle in powering steady swimming. To examine how red muscle is used to power steady swimming in rainbow trout (Oncorhynchus mykiss), electromyographic (EMG) and sonomicrometry recordings were made of muscle activity in vivo. These data were used in in vitro work-loop studies of muscle power production. Data on in vitro power production were also collected for largemouth bass (Micropterus salmoides) red muscle from previously published data on in vivo muscle activity. The in vivo data collected from swimming trout were similar to those for other species. The anterior red muscle of these fish has the longest duty cycle, the smallest phase shift between the onset of EMG activity and maximum muscle length during each tailbeat and undergoes the smallest strain or length change. For both trout and largemouth bass, work-loop experiments indicate that the majority of power for steady swimming is generated by the posterior muscle, as has been observed in other species.


2002 ◽  
Vol 16 (2) ◽  
pp. 92-96
Author(s):  
Tiina Ritvanen ◽  
Reijo Koskelo ◽  
Osmo H„nninen

Abstract This study follows muscle activity in three different learning sessions (computer, language laboratory, and normal classroom) while students were studying foreign languages. Myoelectric activity was measured in 21 high school students (10 girls, 11 boys, age range 17-20 years) by surface electromyography (sEMG) from the upper trapezius and frontalis muscles during three 45-min sessions. Root mean square (RMS) average from both investigated muscles was calculated. The EMG activity was highest in both muscle groups in the computer-aided session and lowest in the language laboratory. The girls had higher EMG activity in both investigated muscle groups in all three learning situations. The measured blood pressure was highest at the beginning of the sessions, decreased within 10 min, but increased again toward the end of the sessions. Our results indicate that the use of a computer as a teaching-aid evokes more constant muscle activity than the traditional learning situations. Since muscle tension can have adverse health consequences, more research is needed to determine optimal classroom conditions, especially when technical aids are used in teaching.


2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Natalia Merkulyeva ◽  
Vsevolod Lyakhovetskii ◽  
Aleksandr Veshchitskii ◽  
Oleg Gorskii ◽  
Pavel Musienko

The optimization of multisystem neurorehabilitation protocols including electrical spinal cord stimulation and multi-directional tasks training require understanding of underlying circuits mechanisms and distribution of the neuronal network over the spinal cord. In this study we compared the locomotor activity during forward and backward stepping in eighteen adult decerebrated cats. Interneuronal spinal networks responsible for forward and backward stepping were visualized using the C-Fos technique. A bi-modal rostrocaudal distribution of C-Fos-immunopositive neurons over the lumbosacral spinal cord (peaks in the L4/L5 and L6/S1 segments) was revealed. These patterns were compared with motoneuronal pools using Vanderhorst and Holstege scheme; the location of the first peak was correspondent to the motoneurons of the hip flexors and knee extensors, an inter-peak drop was presumably attributed to the motoneurons controlling the adductor muscles. Both were better expressed in cats stepping forward and in parallel, electromyographic (EMG) activity of the hip flexor and knee extensors was higher, while EMG activity of the adductor was lower, during this locomotor mode. On the basis of the present data, which showed greater activity of the adductor muscles and the attributed interneuronal spinal network during backward stepping and according with data about greater demands on postural control systems during backward locomotion, we suppose that the locomotor networks for movements in opposite directions are at least partially different.


Sign in / Sign up

Export Citation Format

Share Document