Modulation of Rhythmic Motor Activity by Pyrokinin Peptides

2007 ◽  
Vol 97 (1) ◽  
pp. 579-595 ◽  
Author(s):  
Shari R. Saideman ◽  
Mingming Ma ◽  
Kimberly K. Kutz-Naber ◽  
Aaron Cook ◽  
Pieter Torfs ◽  
...  

Pyrokinin (PK) peptides localize to the central and peripheral nervous systems of arthropods, but their actions in the CNS have yet to be studied in any species. Here, we identify PK peptide family members in the crab Cancer borealis and characterize their actions on the gastric mill (chewing) and pyloric (filtering) motor circuits in the stomatogastric ganglion (STG). We identified PK-like immunolabeling in the STG neuropil, in projection neuron inputs to this ganglion, and in the neuroendocrine pericardial organs. By combining MALDI mass spectrometry (MS) and ESI tandem MS techniques, we identified the amino acid sequences of two C. borealis pyrokinins (CabPK-I, CabPK-II). Both CabPKs contain the PK family-specific carboxy-terminal amino acid sequence (FXPRLamide). PK superfusion to the isolated STG had little influence on the pyloric rhythm but excited many gastric mill neurons and consistently activated the gastric mill rhythm. Both CabPKs had comparable actions in the STG and these actions were equivalent to those of Pevpyrokinin (shrimp) and Leucopyrokinin (cockroach). The PK-elicited gastric mill rhythm usually occurred without activation of the projection neuron MCN1. MCN1, which does not contain CabPKs, effectively drives the gastric mill rhythm and at such times is also a gastric mill central pattern generator (CPG) neuron. Because the PK-elicited gastric mill rhythm is independent of MCN1, the underlying core CPG of this rhythm is different from the one responsible for the MCN1-elicited rhythm. Thus neuromodulation, which commonly alters motor circuit output without changing the core CPG, can also change the composition of this core circuit.

2019 ◽  
Vol 121 (3) ◽  
pp. 950-972 ◽  
Author(s):  
Dawn M. Blitz ◽  
Andrew E. Christie ◽  
Aaron P. Cook ◽  
Patsy S. Dickinson ◽  
Michael P. Nusbaum

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


2004 ◽  
Vol 78 (2) ◽  
pp. 868-881 ◽  
Author(s):  
Rachel H. Edwards ◽  
Diane Sitki-Green ◽  
Dominic T. Moore ◽  
Nancy Raab-Traub

ABSTRACT Seven distinct sequence variants of the Epstein-Barr virus latent membrane protein 1 (LMP1) have been identified by distinguishing amino acid changes in the carboxy-terminal domain. In this study the transmembrane domains are shown to segregate identically with the distinct carboxy-terminal amino acid sequences. Since strains of LMP1 have been shown to differ in abundance between blood and throat washes, nasopharyngeal carcinomas (NPCs) from areas of endemicity and nonendemicity with matching blood were analyzed by using a heteroduplex tracking assay to distinguish LMP1 variants. Striking differences were found between the compartments with the Ch1 strain prevalent in the NPCs from areas of endemicity and nonendemicity and the B958 strain prevalent in the blood of the endemic samples, whereas multiple strains of LMP1 were prevalent in the blood of the nonendemic samples. The possible selection against the B958 strain appearing in the tumor was highly significant (P < 0.0001). Sequence analysis of the full-length LMP1 variants revealed changes in many of the known and computer-predicted HLA-restricted epitopes with changes in key positions in multiple, potential epitopes for the specific HLA of the patients. These amino acid substitutions at key positions in the LMP1 epitopes may result in a reduced cytotoxic-T-lymphocyte response. These data indicate that strains with specific variants of LMP1 are more likely to be found in NPC. The predominance of specific LMP1 variants in NPC could reflect differences in the biologic or molecular properties of the distinct forms of LMP1 or possible immune selection.


1988 ◽  
Vol 18 (12) ◽  
pp. 1595-1602 ◽  
Author(s):  
J. R. Kenny ◽  
B. P. Dancik ◽  
L. Z. Florence ◽  
F. E. Nargang

We have determined the nucleotide sequence of the carboxy-terminal portion of an actin gene (PAc1-A) isolated from Pinuscontorta var. latifolia (Engelm.). Pairwise comparisons of both nucleotide and deduced amino acid sequences were made among PAc1-A, the soybean actins SAc3 and SAc1, maize actin MAc1, chicken β-actin, and yeast β-actin. Of the other actins SAc3 was most similar to the PAc1-A amino acid sequence (91.3% identity) and yeast actin the least similar (78.3% identity). The intron in PAc1-A is present at the same location as the third intron found in MAc1, SAc1, and SAc3 actin genes. This conservation of intron position is unusual when compared with nonplant actin genes.


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4077-4086 ◽  
Author(s):  
W. Hampe ◽  
J. Urny ◽  
I. Franke ◽  
S.A. Hoffmeister-Ullerich ◽  
D. Herrmann ◽  
...  

The neuropeptide head activator plays an important role for proliferation and determination of stem cells in hydra. By affinity chromatography a 200 kDa head-activator binding protein, HAB, was isolated from the multiheaded mutant of Chlorohydra viridissima. Partial amino acid sequences were used to clone the HAB cDNA which coded for a receptor with a unique alignment of extracellular modules, a transmembrane domain, and a short carboxy-terminal cytoplasmic tail. A mammalian HAB homologue with identical alignment of these modules is expressed early in brain development. Specific antibodies revealed the presence of HAB in hydra as a transmembrane receptor, but also as secreted protein, both capable of binding head activator. Secretion of HAB during regeneration and expression in regions of high determination potential hint at a role for HAB in regulating the concentration and range of action of head activator.


2017 ◽  
Vol 118 (5) ◽  
pp. 2806-2818 ◽  
Author(s):  
Rachel S. White ◽  
Robert M. Spencer ◽  
Michael P. Nusbaum ◽  
Dawn M. Blitz

Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity. NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.


1987 ◽  
Vol 247 (1) ◽  
pp. 195-199 ◽  
Author(s):  
J L Schrimsher ◽  
K Rose ◽  
M G Simona ◽  
P Wingfield

Human and mouse granulocyte-macrophage-colony-stimulating factors (hGM-CSF and mGM-CSF, respectively), isolated from Escherichia coli cells expressing the corresponding human and mouse genes, have been characterized. The observed properties of the proteins have been compared with those properties which can be deduced from the DNA sequence alone and the published properties of natural GM-CSFs. The purified E. coli-derived proteins were found to have the expected molecular masses, amino acid compositions and N- and C-terminal amino acid sequences. The finding of 70-90% unprocessed N-terminal methionine for both proteins is discussed. The four Cys residues were found to be involved in two intramolecular disulphide bonds, linking the first and third, and second and fourth Cys residues. This disulphide bond arrangement is probably the one existing in natural material, since, although not glycosylated, both E. coli-derived proteins showed biological activity (colony stimulating assay for hGM-CSF, and cell proliferation assay for mGM-CSF) comparable with that reported for the respective proteins purified from animal cells.


2020 ◽  
Author(s):  
Angela Lopez-del Rio ◽  
Maria Martin ◽  
Alexandre Perera-Lluna ◽  
Rabie Saidi

Abstract Background The use of raw amino acid sequences as input for protein-based deep learning models has gained popularity in recent years. This scheme obliges to manage proteins with different lengths, while deep learning models require same-shape input. To accomplish this, zeros are usually added to each sequence up to a established common length in a process called zero-padding. However, the effect of different padding strategies on model performance and data structure is yet unknown. Results We analysed the impact of different ways of padding the amino acid sequences in a hierarchical Enzyme Commission number prediction problem. Our results show that padding has an effect on model performance even when there are convolutional layers implied. We propose and implement four novel types of padding the amino acid sequences. Conclusions The present study highlights the relevance of the step of padding the one-hot encoded amino acid sequences when building deep learning-based models for Enzyme Commission number prediction. The fact that this has an effect on model performance should raise awareness on the need of justifying the details of this step on future works. The code of this analysis is available at https://github.com/b2slab/padding_benchmark.


2019 ◽  
Vol 55 (No. 1) ◽  
pp. 39-41
Author(s):  
Mengpei Liu ◽  
Pei Hou ◽  
Xiaoyuan Wang ◽  
Yu Dong ◽  
Wei Zong

Armeniaca cathayana, a new species described in 2010, belongs to gametophytic self-incompatibility (GSI) system which is under S-allele control. One new non-S-ribonuclease (non-S-RNase) was found in A. cathayana through comparing its nucleotide and amino acid sequences with sequences of the S-allele in Genbank. The BLAST analysis showed that the one new non-S-RNase S68-RNase (GenBank Accession No. MH155952) had the highest 96% nucleotide sequence homology with Prunus webbii non-S-RNase PW<sub>1</sub> (EU809938.1). Alignment of deduced amino acid sequences of A. cathayana S68-RNase shared 83% similarity with P. webbii PW<sub>1</sub>. The new non-S-RNase determined in this study will provide new information to GSI of Rosaceae.  


Author(s):  
Aaron P. Cook ◽  
Michael P. Nusbaum

Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ('unfed' hemolymph) or fed 15 min - 2 h before hemolymph removal ('fed' hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing)- and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1- or 2 h post-feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1 h time-point (i.e. reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested the fed hemolymph also enhanced the influence of a projection neuron which innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.


1987 ◽  
Vol 7 (11) ◽  
pp. 4065-4074
Author(s):  
B E Rich ◽  
J A Steitz

cDNA clones encoding three antigenically related human ribosomal phosphoproteins (P-proteins) P0, P1, and P2 were isolated and sequenced. P1 and P2 are analogous to Escherichia coli ribosomal protein L7/L12, and P0 is likely to be an analog of L10. The three proteins have a nearly identical carboxy-terminal 17-amino-acid sequence (KEESEESD(D/E)DMGFGLFD-COOH) that is the basis of their immunological cross-reactivity. The identities of the P1 and P2 cDNAs were confirmed by the strong similarities of their encoded amino acid sequences to published primary structures of the homologous rat, brine shrimp, and Saccharomyces cerevisiae proteins. The P0 cDNA was initially identified by translation of hybrid-selected mRNA and immunoprecipitation of the products. To demonstrate that the coding sequences are full length, the P0, P1, and P2 cDNAs were transcribed in vitro by bacteriophage T7 RNA polymerase and the resulting mRNAs were translated in vitro. The synthetic P0, P1, and P2 proteins were serologically and electrophoretically identical to P-proteins extracted from HeLa cells. These synthetic P-proteins were incorporated into 60S but not 40S ribosomes and also assembled into a complex similar to that described for E. coli L7/L12 and L10.


Sign in / Sign up

Export Citation Format

Share Document