Dynamic I-V Curves Are Reliable Predictors of Naturalistic Pyramidal-Neuron Voltage Traces

2008 ◽  
Vol 99 (2) ◽  
pp. 656-666 ◽  
Author(s):  
Laurent Badel ◽  
Sandrine Lefort ◽  
Romain Brette ◽  
Carl C. H. Petersen ◽  
Wulfram Gerstner ◽  
...  

Neuronal response properties are typically probed by intracellular measurements of current-voltage ( I-V) relationships during application of current or voltage steps. Here we demonstrate the measurement of a novel I-V curve measured while the neuron exhibits a fluctuating voltage and emits spikes. This dynamic I-V curve requires only a few tens of seconds of experimental time and so lends itself readily to the rapid classification of cell type, quantification of heterogeneities in cell populations, and generation of reduced analytical models. We apply this technique to layer-5 pyramidal cells and show that their dynamic I-V curve comprises linear and exponential components, providing experimental evidence for a recently proposed theoretical model. The approach also allows us to determine the change of neuronal response properties after a spike, millisecond by millisecond, so that postspike refractoriness of pyramidal cells can be quantified. Observations of I-V curves during and in absence of refractoriness are cast into a model that is used to predict both the subthreshold response and spiking activity of the neuron to novel stimuli. The predictions of the resulting model are in excellent agreement with experimental data and close to the intrinsic neuronal reproducibility to repeated stimuli.

2014 ◽  
Vol 28 (16) ◽  
pp. 1450132 ◽  
Author(s):  
J. Sosnowski

In this paper, an elaborated new theoretical model of the interaction of pancake-type vortices with nanosized defects is presented based on the energy gain analysis of the captured pancake vortices in nanosized defects in multilayered HTc superconductors. Current–voltage characteristics have been calculated in static and dynamic cases and compared with experimental data. Dynamical anomalies have been then predicted based on the solution of magnetic diffusion equation, which also well correspond to our previous experimental data.


Author(s):  
Jacek Sosnowski

Analysis of the influence of the bending strain on the electric properties of the HTc superconducting tapes is presented. The results of experimental investigations in liquid nitrogen temperature of the current-voltage characteristics and critical current of Bi-based tape are given for various bending strain values. Theoretical model of obtained dependences is proposed, while results of numerical calculations are in qualitative agreement with experimental data.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 5
Author(s):  
Raquel de Melo Barbosa ◽  
Fabio Fonseca de Oliveira ◽  
Gabriel Bezerra Motta Câmara ◽  
Tulio Flavio Accioly de Lima e Moura ◽  
Fernanda Nervo Raffin ◽  
...  

Nano-hybrid formulations combine organic and inorganic materials in self-assembled platforms for drug delivery. Laponite is a synthetic clay, biocompatible, and a guest of compounds. Poloxamines are amphiphilic four-armed compounds and have pH-sensitive and thermosensitive properties. The association of Laponite and Poloxamine can be used to improve attachment to drugs and to increase the solubility of β-Lapachone (β-Lap). β-Lap has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. However, the low water solubility of β-Lap limits its clinical and medical applications. All samples were prepared by mixing Tetronic 1304 and LAP in a range of 1–20% (w/w) and 0–3% (w/w), respectively. The β-Lap solubility was analyzed by UV-vis spectrophotometry, and physical behavior was evaluated across a range of temperatures. The analysis of data consisted of response surface methodology (RMS), and two kinds of machine learning (ML): multilayer perceptron (MLP) and support vector machine (SVM). The ML techniques, generated from a training process based on experimental data, obtained the best correlation coefficient adjustment for drug solubility and adequate physical classifications of the systems. The SVM method presented the best fit results of β-Lap solubilization. In silico tools promoted fine-tuning, and near-experimental data show β-Lap solubility and classification of physical behavior to be an excellent strategy for use in developing new nano-hybrid platforms.


1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


Sign in / Sign up

Export Citation Format

Share Document