Control and Estimation of Posture During Quiet Stance Depends on Multijoint Coordination

2007 ◽  
Vol 97 (4) ◽  
pp. 3024-3035 ◽  
Author(s):  
Wei-Li Hsu ◽  
John P. Scholz ◽  
Gregor Schöner ◽  
John J. Jeka ◽  
Tim Kiemel

This study tested the hypotheses that all major joints along the longitudinal axis of the body are equally active during quiet standing and that their motions are coordinated to stabilize the spatial positions of the center of mass (CM) and head. Analyses of the effect of joint configuration variance on the stability of the CM and head positions were performed using the uncontrolled manifold (UCM) approach. Subjects stood quietly with arms folded across their chests for three 5-min trials each with and without vision. The UCM analysis revealed that the six joints examined were coordinated such that their combined variance had minimal effect on the CM and head positions. Removing vision led to a structuring of the resulting increased joint variance such that little of the increase affected stability of the CM and head positions. The results reveal a control strategy involving coordinated variations of most major joints to stabilize variables important to postural control during quiet stance.

Author(s):  
Henrique de Carvalho Pinheiro ◽  
Francesco Russo ◽  
Lorenzo Sisca ◽  
Alessandro Messana ◽  
Davide De Cupis ◽  
...  

Abstract Active aerodynamics is a growing field in the race car and high-performance vehicles segments, since each situation on the track may require different aero forces to achieve the best vehicle dynamics performance. This paper presents an active aerodynamics control system developed through the active control of the body trim. By interchanging four different setups on the suspension heights with a fuzzy logic control, relevant advantage is obtained in terms of lap time reduction. Two systems, a PID and a Feedforward logic, are studied to implement the control strategy and important differences are found in the stability of tire-ground forces benefiting the latter. Furthermore, the system was validated in a Driver-In-the-Loop (DIL) static simulator with a more realistic road conditions and important insights in terms of subjective evaluation.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
F E Fish ◽  
R Holzman

Synopsis The typical orientation of a neutrally buoyant fish is with the venter down and the head pointed anteriorly with a horizontally oriented body. However, various advanced teleosts will reorient the body vertically for feeding, concealment, or prehension. The shrimpfish (Aeoliscus punctulatus) maintains a vertical orientation with the head pointed downward. This posture is maintained by use of the beating fins as the position of the center of buoyancy nearly corresponds to the center of mass. The shrimpfish swims with dorsum of the body moving anteriorly. The cross-sections of the body have a fusiform design with a rounded leading edge at the dorsum and tapering trailing edge at the venter. The median fins (dorsal, caudal, anal) are positioned along the venter of the body and are beat or used as a passive rudder to effect movement of the body in concert with active movements of pectoral fins. Burst swimming and turning maneuvers by yawing were recorded at 500 frames/s. The maximum burst speed was 2.3 body lengths/s, but when measured with respect to the body orientation, the maximum speed was 14.1 body depths/s. The maximum turning rate by yawing about the longitudinal axis was 957.5 degrees/s. Such swimming performance is in line with fishes with a typical orientation. Modification of the design of the body and position of the fins allows the shrimpfish to effectively swim in the head-down orientation.


2013 ◽  
Vol 25 (01) ◽  
pp. 1350010 ◽  
Author(s):  
Shirin Tajali ◽  
H. Negahban ◽  
M. J. Shaterzadeh ◽  
M. Mehravar ◽  
R. Salehi ◽  
...  

Sit-to-stand (STS) is an important functional task affected by low back pain (LBP). It requires fundamental coordination among all segments of the body to control important performance variables such as body's center of mass (CM) and head positions. This study was conducted to determine whether LBPs could coordinate their multiple joints to achieve the task stability to the same extent as healthy controls. About 11 non-specific chronic LBP and 12 healthy control subjects performed STS task at three postural difficulty levels: rigid surface — open eyes (RO), rigid surface — closed eyes (RC) and narrow surface — closed eyes (NC). Motion variability of seven body segments, CM and head positions were calculated across 15 trials, and uncontrolled manifold (UCM) approach was used to investigate joint coordination. This approach partitioned segment angle variations into component that stabilizes a given performance variable and leads to task performance flexibility (UCM variability: VUCM) and that which does not stabilize the performance variable and leads to task performance error (orthogonal variability: VORT). The results showed that LBPs demonstrated significantly less VUCMregarding the control of horizontal CM position and greater VORTregarding the control of horizontal head position. The current findings revealed that multijoint coordination was impaired in the LBP subjects. These altered motor coordination strategies would make their postural control system less adaptive to altered postural demands and may predispose these subjects to re-injury.


Author(s):  
Just L. Herder ◽  
Arend L. Schwab

The stability of a rigid body on which two forces are in equilibrium can be assessed intuitively. In more complex cases this is no longer true. This paper presents a general method to assess the stability of complex force systems, based on the notion of dynamic equivalence. A resultant force is considered dynamically equivalent to a given system of forces acting on a rigid body if the contributions to the stability of the body of both force systems are equal. It is shown that the dynamically equivalent resultant force of two given constant forces applies at the intersection of its line of action and the circle put up by the application points of the given forces and the intersection of their lines of action. The determination of the combined center of mass can be considered as a special case of this theorem. Two examples are provided that illustrate the significance of the proposed method. The first example considers the suspension of a body, by springs only, that is statically balanced for rotation about a virtual stationary point. The second example treats the roll stability of a ship, where the metacentric height is determined in a natural way.


2020 ◽  
Vol 127 (4) ◽  
pp. 639-650
Author(s):  
Kohtaroh Hagio ◽  
Hiroki Obata ◽  
Kimitaka Nakazawa

The execution of cognitive tasks is known to alter postural sway during standing, but the underlying mechanisms are still debated. This study investigated how performing a mental task modified balance control during standing. We required 15 healthy adult males to maintain an upright stance under conditions of simply relaxing and maintaining normal quiet standing (control condition) or while performing a secondary cognitive task (mental arithmetic). Under each condition, we measured the participants’ center of pressure and used kinematic measurements for a quantitative evaluation of postural control modulation. We calculated the standard deviation of the joint angles (ankle, knee, and hip) and the estimated joint stiffness to measure joint mobility changes in postural control. To estimate the kinematic pattern of covariation among these joints, we used uncontrolled manifold analysis, an assessment of the strength of multijoint coordination. Compared to normal standing, executing the cognitive task while standing led to reduced movements of the ankle and hip joints. There were no significant differences in ankle stiffness or uncontrolled manifold ratios between the conditions. Our results suggest that when performing a secondary cognitive task during standing, neither changes in the modification of stiffness nor the strength of multijoint coordination (both of which preserve the center of mass position) explains changes in postural sway.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 151 ◽  
Author(s):  
Volodymyr Bulgakov ◽  
Simone Pascuzzi ◽  
Volodymyr Nadykto ◽  
Semjons Ivanovs

Technological peculiarities of cultivation and harvesting of some agricultural crops make it necessary to use asymmetric machine-and-tractor aggregates. However, for the time being there is no sufficiently complete, analytical study of the steady movement of such machine-and-tractor aggregates. This necessitates the development of a theory of stable movement of the aggregates which would allow choosing their optimal kinematic and design parameters. On the basis of the results of mathematical simulation, a system of linear differential equations of the second order is obtained describing transverse displacement of the center of masses of the aggregating wheeled tractor and turning of its longitudinal axis of symmetry by some angle around the indicated center of mass, as well as the deviation angle of the rear-trailed harvester from the longitudinal axis of the tractor at any arbitrary moment of time. This system of differential equations can be applied for numerical calculations on the PC, which will make it possible to evaluate the stability of the movement of the asymmetric machine-and-tractor aggregate when it performs the technological process.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
A. I. Ismail

In this paper, the stability conditions for the rotary motion of a heavy solid about its fixed point are considered. The center of mass of the body is assumed to lie on the moving z-axis which is assumed to be the minor axis of the ellipsoid of inertia. The nonlinear equations of motion and their three first integrals are obtained when the principal moments of inertia are distributed as I 1 < I 2 < I 3 . We construct a Lyapunov function L to investigate the stability conditions for this motion. We give a numerical example to illustrate the necessary and sufficient conditions for the stability of the body at certain moments of inertia. This problem has many important applications in different sciences.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


Author(s):  
Fesenko, H.

Purpose. Increasing the uniformity of distribution of mineral fertilizers and other bulk materials due to the stability of their feed from the body to the spreading working bodies using the top feeder. Methods. The following methods are used to achieve this aim: the method of comparing the differences between individual groups of fertilizers, the method of analyzing the properties of a new technical system, the method of functional inventiveness, and the methods of theoretical and analytical mechanics. Results. The traction body of the conveyor of the upper feed of the body fat body machine for mineral fertilizers and other bulk materials was substantiated and the relationship between the height of its scrapers and the distance between them was established, as well as the nature of the mineral fertilizer pressure on the curvilinear wall of the body. In addition, the design of the advanced body fertilizer spreader is justified, which ensures a stable flow of fertilizers from the body due to the improvement of the top feeder. Conclusions. Because of the conducted researches, the advantages of machines equipped with top feeder are found. They create the conditions for the forced feeding mineral fertilizers and other loose materials from the container to the distribution bodies, which is a prerequisite for their evenness on the surface. With this, the imperfection of known machines with the top feeder constrains their introduction into agricultural production. On this account, a more thoroughly constructed solution of the body feeder of the top feed is substantiated, in which the conveyor provides a stable supply of fertilizers from the body with reduced energy consumption during operation. Keywords: analysis, feed, upper device, conveyor, stability, fertilizers, flow ability, body.


Sign in / Sign up

Export Citation Format

Share Document