Verticality Perception During Off-Vertical Axis Rotation

2007 ◽  
Vol 97 (5) ◽  
pp. 3256-3268 ◽  
Author(s):  
R.A.A. Vingerhoets ◽  
J.A.M. Van Gisbergen ◽  
W. P. Medendorp

During prolonged rotation about a tilted yaw axis, often referred to as off-vertical axis rotation (OVAR), a percept of being translated along a conical path slowly emerges as the sense of rotation subsides. Recently, we found that these perceptual changes are consistent with a canal–otolith interaction model that attributes the illusory translation percept to improper interpretation of the ambiguous otolith signals. The model further predicts that the illusory translation percept must be accompanied by slowly worsening tilt underestimates. Here, we tested this prediction in six subjects by measuring the time course of the subjective visual vertical (SVV) during OVAR stimulation at three different tilt-rotation speed combinations, in complete darkness. Throughout the 2-min run, at each left-ear-down and right-ear-down position, the subject indicated whether a briefly flashed line deviated clockwise or counterclockwise from vertical to determine the SVV with an adaptive staircase procedure. Typically, SVV errors indicating tilt underestimation were already present at rotation onset and then increased exponentially to an asymptotic value, reached at about 60 s after rotation onset. The initial error in the SVV was highly correlated to the response error in a static tilt control experiment. The subsequent increase in error depended on both rotation speed and OVAR tilt angle, in a manner predicted by the canal–otolith interaction model. We conclude that verticality misjudgments during OVAR reflect a dynamic component linked to canal–otolith interaction, superimposed on a tilt-related component that is also expressed under stationary conditions.

2006 ◽  
Vol 95 (3) ◽  
pp. 1571-1587 ◽  
Author(s):  
R.A.A. Vingerhoets ◽  
W. P. Medendorp ◽  
J.A.M. Van Gisbergen

Human spatial orientation relies on vision, somatosensory cues, and signals from the semicircular canals and the otoliths. The canals measure rotation, whereas the otoliths are linear accelerometers, sensitive to tilt and translation. To disambiguate the otolith signal, two main hypotheses have been proposed: frequency segregation and canal–otolith interaction. So far these models were based mainly on oculomotor behavior. In this study we investigated their applicability to human self-motion perception. Six subjects were rotated in yaw about an off-vertical axis (OVAR) at various speeds and tilt angles, in darkness. During the rotation, subjects indicated at regular intervals whether a briefly presented dot moved faster or slower than their perceived self-motion. Based on such responses, we determined the time course of the self-motion percept and characterized its steady state by a psychometric function. The psychophysical results were consistent with anecdotal reports. All subjects initially sensed rotation, but then gradually developed a percept of being translated along a cone. The rotation percept could be described by a decaying exponential with a time constant of about 20 s. Translation percept magnitude typically followed a delayed increasing exponential with delays up to 50 s and a time constant of about 15 s. The asymptotic magnitude of perceived translation increased with rotation speed and tilt angle, but never exceeded 14 cm/s. These results were most consistent with predictions of the canal–otolith-interaction model, but required parameter values that differed from the original proposal. We conclude that canal–otolith interaction is an important governing principle for self-motion perception that can be deployed flexibly, dependent on stimulus conditions.


2003 ◽  
Vol 90 (2) ◽  
pp. 622-630 ◽  
Author(s):  
Marousa Pavlou ◽  
Nicole Wijnberg ◽  
Mary E. Faldon ◽  
Adolfo M. Bronstein

The subjective visual vertical (SVV) is usually considered a measure of otolith function. Herewith we investigate the influence of semicircular canal (SCC) stimulation on the SVV by rotating normal subjects in yaw about an earth-vertical axis, with velocity steps of ± 90°/s, for 60 s. SVV was assessed by setting an illuminated line to perceived earth vertical in darkness, during a per- and postrotary period. Four head positions were tested: upright, 30° backward (chin up) or forward, and ∼40° forward from upright. During head upright/backward conditions, a significant SVV tilt ( P < 0.01) in the direction opposite to rotation was found that reversed during postrotary responses. The rotationally induced SVV tilt had a time constant of decay of ∼30 s. Rotation with the head 30° forward did not affect SVV, whereas the 40° forward tilt caused a direction reversal of SVV responses compared with head upright/backward. Spearman correlation values (Rho) between individual SCC efficiencies in different head positions and mean SVV tilts were 0.79 for posterior, 0.34 for anterior, and – 0.80 for horizontal SCCs. Three-dimensional video-oculography showed that SVV and torsional eye position measurements were highly correlated (0.83) and in the direction opposite to the slow phase torsional vestibuloocular reflex. In conclusion: 1) during yaw axis rotation without reorientation of the head with respect to gravity, the SVV is influenced by SCC stimulation; 2) this effect is mediated by the vertical SCCs, particularly the posterior SCCs; 3) rotationally induced SVV changes are due to torsional ocular tilt; 4) SVV and ocular tilts occur in the “anticompensatory,” fast phase direction of the torsional nystagmus; and 5) clinically, abnormal SVV tilts cannot be considered a specific indication of otolith system dysfunction.


2003 ◽  
Vol 13 (4-6) ◽  
pp. 215-225
Author(s):  
A.H. Clarke ◽  
U. Schönfeld ◽  
K. Helling

Attention is directed towards the recently developed unilateral tests of saccular and utricular function. Together with the now widely used head-thrust test and the standard caloric test for semicircular canal function, these provide for a more comprehensive unilateral examination of labyrinth function. The efficacy of vestibular evoked myogenic potentials (VEMP) as a direct unilateral test of saccular function is currently being demonstrated in an increasing number of reports. Furthermore, the relevant neuronal pathways have been delineated in animal studies, so that all evidence points to the validity of the VEMP as a saccule-mediated response. Concerning utricular function, considerable headway has been made using the unilateral centrifugation paradigm. Testing is performed with a variable radius rotary chair with constant velocity rotation about the earth-vertical axis. Displacing the head by 3.5–4 cm from the rotation axis, the eccentrically positioned utricle is stimulated unilaterally by the resultant centrifugal force. This paradigm can be employed to elicit a utriculo-ocular response (UOR) or to permit measurement of the subjective visual vertical (SVV). More recently, it has also been demonstrated that testing during normal, on-centre yaw axis rotation is often sufficient to localise peripheral otolith dysfunction by means of SVV estimation. This test mode can be easily integrated into routine clinical testing. To illustrate the efficacy of such differential testing, the findings from two patients are presented that demonstrate for the first time an isolated unilateral utricular dysfunction.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2006 ◽  
Vol 65 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Keisuke Kushiro ◽  
Jun Maruta

1992 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Charles Schnabolk ◽  
Theodore Raphan

Off-vertical-axis rotation (OVAR) in darkness generates continuous compensatory eye velocity. No model has yet been presented that defines the signal processing necessary to estimate head velocity in three dimensions for arbitrary rotations during OVAR. The present study develops a model capable of estimating all 3 components of head velocity in space accurately. It shows that processing of two patterns of otolith activation, one delayed with respect to the other, for each plane of eye movement is not sufficient. (A pattern in this context is an array of signals emanating from the otoliths. Each component of the array is a signal corresponding to a class of otolith hair cells with a given polarization vector as described by Tou and Gonzalez in 1974.) The key result is that estimation of head velocity in space can be achieved by processing three temporally displaced patterns, each representing a sampling of gravity as the head rotates. A vector cross product of differences between pairs of the sampled gravity vectors implements the estimation. An interesting property of this model is that the component of velocity about the axis of rotation reduces to that derived previously using the pattern estimator model described by Raphan and Schnabolk in 1988 and Fanelli et al in 1990. This study suggests that the central nervous system (CNS) maintains a current as well as 2 delayed representations of gravity at every head orientation during rotation. It also suggests that computing vector cross products and implementing delays may be fundamental operations in the CNS for generating orientation information associated with motion.


2007 ◽  
Vol 16 (4-5) ◽  
pp. 209-215
Author(s):  
Joseph M. Furman ◽  
Mark S. Redfern ◽  
Rolf G. Jacob

Previous studies of vestibulo-ocular function in patients with anxiety disorders have suggested a higher prevalence of peripheral vestibular dysfunction compared to control populations, especially in panic disorder with agoraphobia. Also, our recent companion studies have indicated abnormalities in postural control in patients with anxiety disorders who report a high degree of space and motion discomfort. The aim of the present study was to assess the VOR, including the semicircular canal-ocular reflex, the otolith-ocular reflex, and semicircular canal-otolith interaction, in a well-defined group of patients with anxiety disorders. The study included 72 patients with anxiety disorders (age 30.6 +/− 10.6 yrs; 60 (83.3% F) and 29 psychiatrically normal controls (age 35.0 +/minus; 11.6 yrs; 24 (82.8% F). 25 patients had panic disorder; 47 patients had non-panic anxiety. Patients were further categorized based on the presence (45 of 72) or absence (27 of 72) of height phobia and the presence (27 of 72) or absence (45 of 72) of excessive space and motion discomfort (SMD). Sinusoidal and constant velocity earth-vertical axis rotation (EVAR) was used to assess the semicircular canal-ocular reflex. Constant velocity off-vertical axis rotation (OVAR) was used to assess both the otolith-ocular reflex and static semicircular canal-otolith interaction. Sinusoidal OVAR was used to assess dynamic semicircular canal-otolith interaction. The eye movement response to rotation was measured using bitemporal electro-oculography. Results showed a significantly higher VOR gain and a significantly shorter VOR time constant in anxiety patients. The effect of anxiety on VOR gain was significantly greater in patients without SMD as compared to those with SMD. Anxiety patients without height phobia had a larger OVAR modulation. We postulate that in patients with anxiety, there is increased vestibular sensitivity and impaired velocity storage. Excessive SMD and height phobia seem to have a mitigating effect on abnormal vestibular sensitivity, possibly via a down-weighting of central vestibular pathways.


1991 ◽  
Vol 97 (5) ◽  
pp. 845-884 ◽  
Author(s):  
L Csernoch ◽  
G Pizarro ◽  
I Uribe ◽  
M Rodríguez ◽  
E Ríos

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document