The recording of odorant-induced mucosal activity patterns with a voltage-sensitive dye

1992 ◽  
Vol 68 (5) ◽  
pp. 1804-1819 ◽  
Author(s):  
P. F. Kent ◽  
M. M. Mozell

1. Fluorescence changes in the dye (WW 781) were monitored at 100 contiguous sites in a 10 x 10-pixel array on the bullfrog and salamander olfactory mucosas every 10 ms in response to odorous stimuli. The odorants were d-limonene, butanol, and amyl acetate, each presented at two concentrations with a 3:1 ratio. 2. The fluorescence signals elicited by these odorous stimuli were nearly identical in shape and time course to the electro-olfactograms (EOGs) recorded from the same animal under identical conditions. Like the EOGs, the fluorescence signals exhibited adaptation and were abolished by both Triton X-100 and ether. There was no measurable fluorescence when the tissue was not stained with the dye, and there was no change in fluorescence when, for stained tissue, nonodorized, humidified air was presented as the stimulus. 3. This technique presumably monitors the same events as the EOG, but has the advantage of simultaneously recording the odorant-induced activity from multiple sites across most of the mucosa. Thus this technique preserves subtle differences heretofore lost by other techniques both in the coarseness of their matrices and in the variability generated by trying to piece together, into one collage, results from numerous presentations given at different times. 4. In all preparations, there was a larger difference in the inherent activity patterns (derived from response magnitudes) between different odorants than between different concentrations of the same odorant. These differences were largest on the mucosa lining the floor of salamander's olfactory sac. d-limonene and butanol gave their largest responses near the internal and external nares, respectively, whereas the responses for amyl acetate were more uniform across the mucosal sheet. In contrast to the salamander, smaller differences were observed for both the roof and the floor of the bullfrog's olfactory sac. For the floor, both amyl acetate and d-limonene elicited similar patterns of response magnitude, whereas butanol differed from each of these odorants by eliciting a larger response on the anteriolateral aspect of the mucosa and a lesser response on the remainder. For the roof, different odorants produced different activity patterns, which had profiles not simply described as regions of maximal and minimal responsiveness. 5. Different inherent activity patterns based on temporal characteristics of the fluorescence responses were also observed for different odorants. Each odorant produced a different pixel-by-pixel pattern for the times at which the responses started and ended. For any given odorant, these temporal patterns paralleled the patterns given by response magnitudes.(ABSTRACT TRUNCATED AT 400 WORDS)

1995 ◽  
Vol 73 (5) ◽  
pp. 2053-2071 ◽  
Author(s):  
A. R. Cinelli ◽  
K. A. Hamilton ◽  
J. S. Kauer

1. Activity patterns across and within the laminae of the olfactory bulb were analyzed by imaging voltage-sensitive dye responses during odorant stimulation of all or part of the ventral olfactory mucosa. 2. The time course of the signals was generally characterized by a brief, small hyperpolarization, followed by a period of depolarization, and then a longer-lasting hyperpolarization similar to that seen with electric stimulation but with longer durations. 3. The activity was distributed nonhomogeneously across the bulbar laminae in the form of spatially segregated clusters having bandlike appearances. Clusters were observed with three monomolecular odorants, amyl acetate, ethyl-n-butyrate, and limonene, and with the complex odor of meal worms. Although response patterns to different odorants overlapped, they also showed differences in overall distribution. 4. Delivery of high odorant concentrations increased the size of the activated areas and accentuated the degree of response pattern overlap among different odorants. The general properties of the response patterns generated by each odorant were, however, similar at different odorant concentrations and in each of the animals tested. 5. The spatial and temporal distributions of the bulbar responses were somewhat similar regardless of whether the odorants were applied to local epithelial regions via punctate stimulation or to the entire mucosa. Certain regions did, however, have lower thresholds than others for eliciting bulbar activity in response to particular odorants. 6. Odorants applied to regions of the epithelium outside the areas of maximum sensitivity elicited odorant-related activity patterns with depolarizing and hyperpolarizing components similar to those seen with overall stimulation, but only if higher concentrations were used. Activation of distributed odorant sensitivities presumably gave rise to these patterns. 7. These data suggest that subsets of odorant receptor types are found in different areas of the olfactory epithelium, and demonstrate that there is widespread distribution across the epithelium of receptors sensitive to particular odorants. On the basis of the structure of these epithelial fields and the bulb response patterns that they relate to, these findings also provide evidence for complex spatial relationships between the olfactory epithelium and bulb. 8. The findings from this study suggest that representation of odor information in the salamander olfactory bulb does not occur by activation of a few selective bulbar regions, each related to a different odorant species. Instead, large regions of bulbar circuitry are involved in which molecular epitopes may be the unit of representation. Incorporation of new data presented here into a hypothesis of odor coding is discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rachel G. Curtis ◽  
Timothy Olds ◽  
François Fraysse ◽  
Dorothea Dumuid ◽  
Gilly A. Hendrie ◽  
...  

Abstract Background Almost one in three Australian adults are now obese, and the rate continues to rise. The causes of obesity are multifaceted and include environmental, cultural and lifestyle factors. Emerging evidence suggests there may be temporal patterns in weight gain related, for example, to season and major festivals such as Christmas, potentially due to changes in diet, daily activity patterns or both. The aim of this study is to track the annual rhythm in body weight, 24 h activity patterns, dietary patterns, and wellbeing in a cohort of Australian adults. In addition, through data linkage with a concurrent children’s cohort study, we aim to examine whether changes in children’s body mass index, activity and diet are related to those of their parents. Methods A community-based sample of 375 parents aged 18 to 65 years old, residing in or near Adelaide, Australia, and who have access to a Bluetooth-enabled mobile device or a computer and home internet, will be recruited. Across a full year, daily activities (minutes of moderate to vigorous physical activity, light physical activity, sedentary behaviour and sleep) will be measured using wrist-worn accelerometry (Fitbit Charge 3). Body weight will be measured daily using Fitbit wifi scales. Self-reported dietary intake (Dietary Questionnaire for Epidemiological Studies V3.2), and psychological wellbeing (WHOQOL-BREF and DASS-21) will be assessed eight times throughout the 12-month period. Annual patterns in weight will be examined using Lowess curves. Associations between changes in weight and changes in activity and diet compositions will be examined using repeated measures multi-level models. The associations between parent’s and children’s weight, activity and diet will be investigated using multi-level models. Discussion Temporal factors, such as day type (weekday or weekend day), cultural celebrations and season, may play a key role in weight gain. The aim is to identify critical opportunities for intervention to assist the prevention of weight gain. Family-based interventions may be an important intervention strategy. Trial registration Australia New Zealand Clinical Trials Registry, identifier ACTRN12619001430123. Prospectively registered on 16 October 2019.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hope J. Woods ◽  
Ming Fei Li ◽  
Ujas A. Patel ◽  
B. Duncan X. Lascelles ◽  
David R. Samson ◽  
...  

AbstractThe study of companion (pet) dogs is an area of great translational potential, as they share a risk for many conditions that afflict humans. Among these are conditions that affect sleep, including chronic pain and cognitive dysfunction. Significant advancements have occurred in the ability to study sleep in dogs, including development of non-invasive polysomnography; however, basic understanding of dog sleep patterns remains poorly characterized. The purpose of this study was to establish baseline sleep–wake cycle and activity patterns using actigraphy and functional linear modeling (FLM), for healthy, adult companion dogs. Forty-two dogs were enrolled and wore activity monitors for 14 days. FLM demonstrated a bimodal pattern of activity with significant effects of sex, body mass, and age; the effect of age was particularly evident during the times of peak activity. This study demonstrated that FLM can be used to describe normal sleep–wake cycles of healthy adult dogs and the effects of physiologic traits on these patterns of activity. This foundation makes it possible to characterize deviations from normal patterns, including those associated with chronic pain and cognitive dysfunction syndrome. This can improve detection of these conditions in dogs, benefitting them and their potential as models for human disease.


2009 ◽  
Vol 55 (11) ◽  
pp. 1967-1976 ◽  
Author(s):  
Shiyun Huang ◽  
Honggang Li ◽  
Xiaofang Ding ◽  
Chengliang Xiong

Abstract Background: We recently detected cell-free seminal RNA (cfsRNA) and set out to study its concentration, integrity, stability in healthy individuals, and mechanisms for its protection from ribonucleases. Methods: We quantified cfsRNA by reverse-transcription quantitative real-time PCR (RT-qPCR) targeting of the 5′ region of the ACTB (actin, beta) transcript. cfsRNA integrity was analyzed by microcapillary electrophoresis and by amplification of full-length ACTB and DDX4 [DEAD (Asp-Glu-Ala-Asp) box polypeptide 4] transcripts, including measurement of the relative amounts of different regions of ACTB and DDX4 transcripts. Stability of cfsRNA was measured by time-course analysis of different regions of ACTB and DDX4 transcripts. To investigate whether cfsRNA was protected in complexed forms, we processed seminal plasma in 2 ways: filtration through pores of different sizes and Triton X-100 treatment before RNA recovery. Results: cfsRNA concentrations varied from 0.87–3.64 mg/L [mean (SD), 1.75 mg/L (0.92 mg/L)]. Most cfsRNA was present in partially degraded forms, with smaller amounts of middle and 3′ amplicons compared with 5′ amplicons. Although the 3′ region of the DDX4 transcript was degraded completely by 90 min, the 5′ regions of ACTB and DDX4 transcripts were stable up to 24 h. Filtration through 0.22-μm pores reduced ACTB and DDX4 mRNA concentrations by 72% and 61%, respectively. Nearly all seminal ACTB and DDX4 mRNA disappeared after Triton X-100 treatment. Conclusions: Although cfsRNA was partially degraded, it represented diverse transcript species and was abundant, fairly stable, and associated with particles in healthy individuals. cfsRNA may represent a potential noninvasive biomarker of the male reproductive system and of germline epigenetics.


2009 ◽  
Vol 101 (1) ◽  
pp. 474-490 ◽  
Author(s):  
Michael E. Brown ◽  
Michael Ariel

Physiological activity of the turtle cerebellar cortex (Cb), maintained in vitro, was recorded during microstimulation of inferior olive (IO). Previous single-electrode responses to such stimulation showed similar latencies across a limited region of Cb, yet those recordings lacked spatial and temporal resolution and the recording depth was variable. The topography and timing of those responses were reexamined using photodiode optical recordings. Because turtle Cb is thin and unfoliated, its entire surface can be stained by a voltage-sensitive dye and transilluminated to measure changes in its local absorbance. Microstimulation of the IO evoked widespread depolarization from the rostral to the caudal edge of the contralateral Cb. The time course of responses measured at a single photodiode matched that of single-microelectrode responses in the corresponding Cb locus. The largest and most readily evoked response was a sagittal band centered about 0.7 mm from the midline. Focal white-matter (WM) microstimulation on the ventricular surface also activated sagittal bands, whereas stimulation of adjacent granule cells evoked a radial patch of activation. In contrast, molecular-layer (ML) microstimulation evoked transverse beams of activation, centered on the rostrocaudal stimulus position, which traveled bidirectionally across the midline to the lateral edges of the Cb. A timing analysis demonstrated that both IO and WM microstimulation evoked responses with a nearly simultaneous onset along a sagittal band, whereas ML microstimulation evoked a slowly propagating wave traveling about 25 cm/s. The response similarity to IO and WM microstimulation suggests that the responses to WM microstimulation are dominated by activation of its climbing fibers. The Cb's role in the generation of precise motor control may result from these temporal and topographic differences in orthogonally oriented pathways. Optical recordings of the turtle's thin flat Cb can provide insights into that role.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26158 ◽  
Author(s):  
Markus Rothermel ◽  
Benedict Shien Wei Ng ◽  
Agnieszka Grabska-Barwińska ◽  
Hanns Hatt ◽  
Dirk Jancke

2003 ◽  
Vol 12 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Mingyu Liang ◽  
Baozhi Yuan ◽  
Elizabeth Rute ◽  
Andrew S. Greene ◽  
Michael Olivier ◽  
...  

Dahl salt-sensitive SS and consomic, salt-resistant SS-13BN/Mcw rats possess a highly similar genetic background but exhibit substantial differences in blood pressure salt sensitivity. We used cDNA microarrays to examine sequential changes of mRNA expression of ∼2,000 currently known rat genes in the renal medulla (a tissue critical for long-term blood pressure regulation) in SS and SS-13BN/Mcw rats in response to a high-salt diet (16 h, 3 days, or 2 wk). Differentially expressed genes in each between-group comparison were identified based on a threshold determined experimentally using a reference distribution that was constructed by comparing rats within the same group. A difference analysis of 54 microarrays identified 50 genes that exhibited the most distinct temporal patterns of expression between SS and SS-13BN/Mcw rats over the entire time course. Thirty of these genes could be linked to the regulation of arterial blood pressure or renal injury based on their known involvement in functional pathways such as renal tubular transport, metabolism of vasoactive substances, extracellular matrix formation, and apoptosis. Importantly, the majority of the 30 genes exhibited temporal expression patterns that would be expected to lower arterial pressure and reduce renal injury in SS-13BN/Mcw compared with SS rats. The phenotypic impact of the other 20 genes was less clear. These 50 genes are widely distributed on chromosome 13 and several other chromosomes. This suggested that primary genetic defects, although important, are unlikely to be solely responsible for the full manifestation of this type of hypertension and associated injury phenotypes. In summary, the results of this study identified a number of pathways potentially important for the amelioration of hypertension and renal injury in SS-13BN/Mcw rats, and these results generated a series of testable hypotheses related to the role of the renal medulla in the complex mechanism of salt-sensitive hypertension.


2018 ◽  
Vol 14 (6) ◽  
pp. 20180115 ◽  
Author(s):  
Talisin T. Hammond ◽  
Rupert Palme ◽  
Eileen A. Lacey

Differences in temporal patterns of activity can modulate the ambient conditions to which organisms are exposed, providing an important mechanism for responding to environmental change. Such differences may be particularly relevant to ecological generalists, which are expected to encounter a wider range of environmental conditions. Here, we compare temporal patterns of activity for partially sympatric populations of a generalist (the lodgepole chipmunk, Tamias speciosus ) and a more specialized congener (the alpine chipmunk, Tamias alpinus ) that have displayed divergent responses to the past century of environmental change. Although mean activity budgets were similar between species, analyses of individual-level variation in locomotion revealed that T. alpinus exhibited a narrower range of activity patterns than T . speciosus . Further analyses revealed that T. alpinus was more active earlier in the day, when temperatures were cooler, and that activity patterns for both species changed with increased interspecific co-occurrence. These results are consistent with the greater responsiveness of T. alpinus to changes in environmental conditions. In addition to highlighting the utility of accelerometers for collecting behavioural data, our findings add to a growing body of evidence, suggesting that the greater phenotypic variability displayed by ecological generalists may be critical to in situ responses to environmental change.


Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 549-555 ◽  
Author(s):  
S L Helfand ◽  
K J Blake ◽  
B Rogina ◽  
M D Stracks ◽  
A Centurion ◽  
...  

Abstract The time course of gene expression in the adult fruit fly has been partially characterized by using enhancer trap and reporter gene constructs that mark 49 different genes. The relative intensity of the reporter protein in individual cells of the antennae was measured as a function of adult age. Most genes showed a graduated expression, and the intensity of expression had a reproducible and characteristic time course. Different genes displayed different temporal patterns of expression and more often than not the pattern of expression was complex. We found a number of genes having patterns that scaled with life span. In these cases the intensity of gene expression was found to be invariant with respect to biological time, when expressed as a fraction of the life span of the line. The scaling was observed even when life span was varied as much as threefold. Such scaling serves to (1) further demonstrate that deterministic mechanisms such as gene regulation act to generate the temporal patterns of expression seen during adult life, (2) indicate that control of these regulatory mechanisms is linked to life span, and (3) suggest mechanisms by which this control is accomplished. We have concluded that gene expression in the adult fly is often regulated in a fashion that allows for graduated expression over time, and that the regulation itself is changing throughout adult life according to some prescribed program or algorithm.


Sign in / Sign up

Export Citation Format

Share Document