Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences

Physiology ◽  
2021 ◽  
Author(s):  
Gary L. Pierce ◽  
Thais A Coutinho ◽  
Lyndsey E. DuBose ◽  
Anthony J. Donato

Aortic stiffness increases with advancing age more than doubling during the human lifespan and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle- and older age the aorta continues to remodel to a larger diameter thinning the pool of permanent elastin fibers increasing intramural wall stress resulting in the transfer of load bearing onto stiffer collagen fibers. While aortic stiffening in early middle-age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically 'good' early in the lifespan, the negative clinical consequences of accelerated aortic stiffening beyond middle-age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "Windkessel effect" with advancing age results in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high flow, low resistance organs such as brain, kidney, retina and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased vasodilator tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the U.S., aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.

2018 ◽  
Vol 124 (5) ◽  
pp. 1194-1202 ◽  
Author(s):  
Rachel A. Gioscia-Ryan ◽  
Micah L. Battson ◽  
Lauren M. Cuevas ◽  
Jason S. Eng ◽  
Michael P. Murphy ◽  
...  

Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive dysfunction, and other chronic disorders of aging. Mitochondria-derived reactive oxygen species are a key source of arterial oxidative stress, which may contribute to arterial stiffening by promoting adverse structural changes—including collagen overabundance and elastin degradation—and enhancing inflammation, but the potential for mitochondria-targeted therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed aortic stiffness [pulse-wave velocity (aPWV)], ex vivo aortic intrinsic mechanical properties [elastic modulus (EM) of collagen and elastin regions], and aortic protein expression in young (~6 mo) and old (~27 mo) male C57BL/6 mice consuming normal drinking water (YC and OC) or water containing mitochondria-targeted antioxidant MitoQ (250 µM; YMQ and OMQ) for 4 wk. Both baseline and postintervention aPWV values were higher in OC vs. YC (post: 482 ± 21 vs. 420 ± 5 cm/s, P < 0.05). MitoQ had no effect in young mice but decreased aPWV in old mice (OMQ, 426 ± 20, P < 0.05 vs. OC). MitoQ did not affect age-associated increases in aortic collagen-region EM, collagen expression, or proinflammatory cytokine expression, but partially attenuated age-associated decreases in elastin region EM and elastin expression. Our results demonstrate that MitoQ reverses in vivo aortic stiffness in old mice and suggest that mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in humans. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation/reversal of age-related aortic elastin degradation. NEW & NOTEWORTHY We show that 4 wk of treatment with the mitochondria-specific antioxidant MitoQ in mice completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave velocity. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in humans, possibly decreasing the risk of many chronic age-related clinical disorders.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 829-830
Author(s):  
Nathan Greenberg ◽  
Nicholas VanDongen ◽  
Rachel Gioscia-Ryan ◽  
Abigail Casso ◽  
David Hutton ◽  
...  

Abstract Age-related increases in aortic stiffness contribute to the development of cardiovascular diseases (CVD). To determine whether the gut microbiome (GM) modulates age-related aortic stiffening, we performed fecal microbiota transplants (FMT) between young (Y; 3 month) and older (O; 25 month) male C57BL/6N mice. Following antibiotic treatment (to suppress endogenous microbiota), mice received weekly FMT (fecal samples collected at baseline) via oral gavage for 8-16 weeks from their own (i.e., sham condition: Y-y, O-o [RECIPIENT-donor]) or opposite age group (Y-o, O-y) (N=8-12/group). In vivo aortic stiffness (pulse wave velocity [PWV]) was higher in older vs. young mice at baseline (382±8 vs. 328±7cm/sec, mean±SE, P&lt;0.001). Arterial phenotypes were transferred such that old microbiota transplanted into young mice increased, while young into old decreased, PWV (Y-y: 325±10 vs. Y-o: 362±10cm/sec, P=0.022; O-o: 409±10 vs. O-y: 335±6cm/sec, P&lt;0.001). Intrinsic mechanical stiffness of excised aortic rings (elastic modulus) increased after transplant of old into young (Y-y: 2141±223 vs. Y-o: 3218±394kPA, P=0.022), and decreased with young into old (O-O: 3263±217 vs. O-y: 2602±136kPA, P=0.016), indicating the GM mediates aortic stiffening by modulating structural changes in the arterial wall. Age-related increases in aortic abundance of advanced glycation end products (AGEs), which cross-link arterial structural proteins, tended to be transferred by the GM (Y-y: 0.022±0.001 vs. Y-o: 0.038±0.006 A.U., P=0.11; O-o: 0.120±0.029 vs. O-y: 0.038±0.009 A.U., P=0.06). The aging GM can induce aortic stiffening via promoting AGEs accumulation and crosslinking of arterial structural proteins, and thus might be a promising target for preventing/treating age-related aortic stiffening and CVD.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Alejandro Perez-Casares ◽  
Audrey Dionne ◽  
Kimberlee Gauvreau ◽  
Ashwin Prakash

Abstract Background Aortic stiffness has been shown to be abnormal in patients with bicuspid aortic valve (BAV), and is considered a component of the aortopathy associated with this condition. Progressive aortic stiffening associated with aging has been previously described in normal adults. However, it is not known if aging related aortic stiffening occurs at the same rate in BAV patients. We determined the longitudinal rate of decline in segmental distensibility in BAV patients using serial cardiovascular magnetic resonance (CMR) studies, and compared to previously published results from a group of patients with connective tissue disorders (CTD). Methods A retrospective review of CMR and clinical data on children and adults with BAV (n = 49, 73% male; 23 ± 11 years) with at least two CMRs (total 98 examinations) over a median follow-up of 4.1 years (range 1–9 years) was performed to measure aortic distensibility at the ascending (AAo) and descending aorta (DAo). Longitudinal changes in aortic stiffness were assessed using linear mixed-effects modeling. The comparison group of CTD patients had a similar age and gender profile (n = 50, 64% male; 20.6 ± 12 years). Results Compared to CTD patients, BAV patients had a more distensible AAo early in life but showed a steeper decline in distensibility on serial examinations [mean 10-year decline in AAo distensibility (× 10−3 mmHg−1) 2.4 in BAV vs 1.3 in CTD, p = 0.005]. In contrast, the DAo was more distensible in BAV patients throughout the age spectrum, and DAo distensibility declined with aging at a rate similar to CTD patients [mean 10 year decline in DAo distensibility (× 10−3 mmHg−1) 0.3 in BAV vs 0.4 in CTD, p = 0.58]. Conclusions On serial CMR measurements, AAo distensibility declined at significantly steeper rate in BAV patients compared to a comparison group with CTDs, while DAo distensibility declined at similar rates in both groups. These findings offer new mechanistic insights into the differing pathogenesis of the aortopathy seen in BAV and CTD patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Satoshi Yamada ◽  
Kazunori Okada ◽  
Hisao Nishino ◽  
Hiroyuki Iwano ◽  
Daisuke Murai ◽  
...  

Background: Longitudinal myocardial shortening is known to be reduced even if left ventricular (LV) ejection fraction (EF) is preserved in patients with hypertensive heart disease (HHD). However, the compensatory mechanism remains to be elucidated. Thus layer-specific longitudinal and circumferential strain as well as stress-strain relationship was observed in HHD patients. Methods: In 46 HHD patients with preserved EF (>50%) and 29 age-matched control subjects, global longitudinal strain (LS) and layer-specific circumferential strain (CS) were measured from the apical 4-chamber view and mid-ventricular short-axis view, respectively, by using speckle tracking echocardiography. LS was measured at innermost LV wall layer, and CS at innermost, midwall, and outermost layers. Layer-specific end-systolic circumferential wall stress (CWS) according to Mirsky’s formula and endocardial meridional wall stress (MWS) were calculated. Results: Systolic blood pressure (147±20 mm Hg), interventricular septal thickness (13±2 mm), and LV dimension (48±4 mm) were greater in HHD than controls, whereas EF was comparable (66±8 vs 66±5%). LS was smaller in HHD than controls (-13±3 vs -17±3%, p<0.001) in spite of reduced MWS (520±141 vs 637±164 dyn·mm -2 , p<0.01), suggesting impaired longitudinal myocardial function in HHD. Similarly, CS was smaller in HHD than controls at outer layer (-6.8±2.2 vs -8.8±2.2%, p<0.01) and at midwall (-11.3±3.4 vs -13.9±3.2%, p<0.01) in spite of reduced CWS (outer: 238±82 vs 336±110 dyn·mm -2 , p<0.001; mid: 360±107 vs 473±131 dyn·mm -2 , p<0.001). In contrast, at the innermost layer, both CS (-26±5 vs -25±5%, p=0.41) and CWS (979±153 vs 992±139 dyn·mm -2 , p=0.72) were comparable between groups. Furthermore, the difference of CS between inner and outer layers significantly correlated with relative wall thickness (r=-0.33, p<0.01). Finally, CS at inner layer significantly correlated with EF (r=-0.43, p<0.001), whereas LS did not. Conclusions: In patients with HHD, intrinsic myocardial shortening was impaired both longitudinally and circumferentially. Some compensatory mechanism associated with increased relative wall thickness might work to maintain subendocardial CS, resulting in preserved EF.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Kim Ramil C Montaniel ◽  
Jing Wu ◽  
Matthew R Bersi ◽  
Liang Xiao ◽  
Hana A Itani ◽  
...  

We and others have shown that hypertension (HTN) is linked with striking fibrosis in the aortic adventitia. This leads to aortic stiffening, leading to organ damage. Through a screen of microRNAs (miRNAs) in the aorta, we found that miR-762 is the most upregulated miRNA in Ang II hypertensive mice. qRT-PCR confirmed that miR-762 is upregulated 6.35±1.22 (p=0.03) fold in Ang II-infused mice compared to controls. To study the role of miR-762 in HTN, we administered a locked nucleic acid inhibitor of miR-762. MiR-762 inhibition normalized stress-strain relationships and aortic systolic energy storage (ASE) (Table). Moreover, miR-762 inhibition in the last 2 weeks of Ang II infusion reversed aortic stiffness in mice treated with 4 wk of Ang II (ASE, 4 wk Ang II [51±5.18 kPa] vs 4wk Ang II + LNA-762 (last 2 wk) [20±1.76 kPa], p<0.0001). Further studies showed that miR-762 inhibition reduced mRNA for several collagens and fibronectin and upregulated collagenases MMP1a, 8 and 13 (Table). Lastly, we found that miR-762 inhibition during Ang II infusion led to a 9.11±1.92 (p=0.007) fold increase in Sprouty1 mRNA, suggesting that miR-762 targets Sprouty1 mRNA. Sprouty1 inhibits the activation of p38-MAPK which is critical in the process of aortic stiffening. Hence, miR-762 modulates aortic stiffening and fibrosis through a Sprouty1-p38-MAPK mechanism. Thus, miR-762 has a major role in modulating aortic stiffening and its inhibition dramatically inhibits pathological fibrosis, enhances matrix degradation, prevents and reverses aortic stiffness. miR-762 inhibition might represent a new approach to prevent aortic stiffening and its consequent end-organ damage.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Uwe Raaz ◽  
Alexander M Zöllner ◽  
Ryuji Toh ◽  
Futoshi Nakagami ◽  
Isabel N Schellinger ◽  
...  

Stiffening of the aortic wall is a phenomenon consistently observed in abdominal aortic aneurysm (AAA). However, its role in AAA pathophysiology is largely undefined. Using an established murine elastase-induced AAA model, we demonstrate that segmental aortic stiffening (SAS) precedes aneurysm growth. Finite elements analysis (FEA)-based wall stress calculations reveal that early stiffening of the aneurysm-prone aortic segment leads to axial (longitudinal) stress generated by cyclic (systolic) tethering of adjacent, more compliant wall segments. Interventional stiffening of AAA-adjacent segments (via external application of surgical adhesive) significantly reduces aneurysm growth. These changes correlate with reduced segmental stiffness of the AAA-prone aorta (due to equalized stiffness in adjacent aortic segments), reduced axial wall stress, decreased production of reactive oxygen species (ROS), attenuated elastin breakdown, and decreased expression of inflammatory cytokines and macrophage infiltration, as well as attenuated apoptosis within the aortic wall. Cyclic pressurization of stiffened aortic segments ex vivo increases the expression of genes related to inflammation and extracellular matrix (ECM) remodeling. Finally, human ultrasound studies reveal that aging, a significant AAA risk factor, is accompanied by segmental infrarenal aortic stiffening. The present study introduces the novel concept of segmental aortic stiffening (SAS) as an early pathomechanism generating aortic wall stress and thereby triggering AAA growth. Therefore monitoring SAS by ultrasound might help to better identify patients at risk for AAA disease and better predict the susceptibility of small AAA to further growth. Moreover our results suggest that interventional mechanical stiffening of the AAA-adjacent aorta may be further tested as a novel treatment option to limit early AAA growth.


2010 ◽  
Vol 51 (1) ◽  
pp. 79 ◽  
Author(s):  
Elod Kortvely ◽  
Stefanie M. Hauck ◽  
Gabriele Duetsch ◽  
Christian J. Gloeckner ◽  
Elisabeth Kremmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document