Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery

2012 ◽  
Vol 44 (21) ◽  
pp. 1003-1012 ◽  
Author(s):  
R. Pellegrino ◽  
D. Y. Sunaga ◽  
C. Guindalini ◽  
R. C. S. Martins ◽  
D. R. Mazzotti ◽  
...  

Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshio Sakai ◽  
Alessandro Nasti ◽  
Yumie Takeshita ◽  
Miki Okumura ◽  
Shinji Kitajima ◽  
...  

AbstractBlood circulates throughout the body via the peripheral tissues, contributes to host homeostasis and maintains normal physiological functions, in addition to responding to lesions. Previously, we revealed that gene expression analysis of peripheral blood cells is a useful approach for assessing diseases such as diabetes mellitus and cancer because the altered gene expression profiles of peripheral blood cells can reflect the presence and state of diseases. However, no chronological assessment of whole gene expression profiles has been conducted. In the present study, we collected whole blood RNA from 61 individuals (average age at registration, 50 years) every 4 years for 8 years and analyzed gene expression profiles using a complementary DNA microarray to examine whether these profiles were stable or changed over time. We found that the genes with very stable expression were related mostly to immune system pathways, including antigen cell presentation and interferon-related signaling. Genes whose expression was altered over the 8-year study period were principally involved in cellular machinery pathways, including development, signal transduction, cell cycle, apoptosis, and survival. Thus, this chronological examination study showed that the gene expression profiles of whole blood can reveal unmanifested physiological changes.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


2018 ◽  
Vol 12 (2) ◽  
pp. 204-213
Author(s):  
Amanda J. Cox ◽  
Ping Zhang ◽  
Tiffany J. Evans ◽  
Rodney J. Scott ◽  
Allan W. Cripps ◽  
...  

2013 ◽  
Vol 154 (1) ◽  
pp. 28-44 ◽  
Author(s):  
Hugejiletu Hugejiletu ◽  
Gerd Bobe ◽  
William R. Vorachek ◽  
M. Elena Gorman ◽  
Wayne D. Mosher ◽  
...  

2006 ◽  
Vol 8 (5) ◽  
pp. 551-558 ◽  
Author(s):  
Jinny Liu ◽  
Elizabeth Walter ◽  
David Stenger ◽  
Dzung Thach

2016 ◽  
Vol 65 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Jussara Gonçalves Fernandes ◽  
Tatiane Canhamero ◽  
Andrea Borrego ◽  
José Ricardo Jensen ◽  
Wafa Hanna Cabrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document