scholarly journals Pattern analysis uncovers a chronic ethanol-induced disruption of the switch-like dynamics of C/EBP-β and C/EBP-α genome-wide binding during liver regeneration

2017 ◽  
Vol 49 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Lakshmi Kuttippurathu ◽  
Biswanath Patra ◽  
Daniel Cook ◽  
Jan B. Hoek ◽  
Rajanikanth Vadigepalli

Chronic ethanol intake impairs liver regeneration through a system-wide alteration in the regulatory networks driving the response to injury. Our study focused on the initial phase of response to 2/3rd partial hepatectomy (PHx) to investigate how adaptation to chronic ethanol intake affects the genome-wide binding profiles of the transcription factors C/EBP-β and C/EBP-α. These factors participate in complementary and often opposing functions for maintaining cellular differentiation, regulating metabolism, and governing cell growth during liver regeneration. We analyzed ChIP-seq data with a comparative pattern count (COMPACT) analysis, which exhaustively enumerates temporal patterns of discretized binding profiles to identify dominant as well as subtle patterns that may not be apparent from conventional clustering analyses. We found that adaptation to chronic ethanol intake significantly alters the genome-wide binding profile of C/EBP-β and C/EBP-α before and following PHx. A subset of these ethanol-induced changes include C/EBP-β binding to promoters of genes involved in the profibrogenic transforming growth factor-β pathway, and both C/EBP-β and C/EBP-α binding to promoters of genes involved in the cell cycle, apoptosis, homeostasis, and metabolic processes. The shift in C/EBP binding loci, coupled with an ethanol-induced increase in C/EBP-β binding at 6 h post-resection, indicates that ethanol adaptation may change both the amount and nature of C/EBP binding postresection. Taken together, our results suggest that chronic ethanol consumption leads to a spatially and temporally reorganized activity at many genomic loci, resulting in a shift in the dynamic balance and coordination of cellular processes underlying regenerative response.

2017 ◽  
Vol 96 (11) ◽  
pp. 1184-1191 ◽  
Author(s):  
C. Li ◽  
Y. Lan ◽  
R. Jiang

Development of the mammalian secondary palate involves highly dynamic morphogenetic processes, including outgrowth of palatal shelves from the oral side of the embryonic maxillary prominences, elevation of the initially vertically oriented palatal shelves to the horizontal position above the embryonic tongue, and subsequently adhesion and fusion of the paired palatal shelves at the midline to separate the oral cavity from the nasal cavity. Perturbation of any of these processes could cause cleft palate, a common birth defect that significantly affects patients’ quality of life even after surgical treatment. In addition to identifying a large number of genes required for palate development, recent studies have begun to unravel the extensive cross-regulation of multiple signaling pathways, including Sonic hedgehog, bone morphogenetic protein, fibroblast growth factor, transforming growth factor β, and Wnt signaling, and multiple transcription factors during palatal shelf growth and patterning. Multiple studies also provide new insights into the gene regulatory networks and/or dynamic cellular processes underlying palatal shelf elevation, adhesion, and fusion. Here we summarize major recent advances and integrate the genes and molecular pathways with the cellular and morphogenetic processes of palatal shelf growth, patterning, elevation, adhesion, and fusion.


2016 ◽  
Vol 12 (3) ◽  
pp. 1037-1056 ◽  
Author(s):  
Lakshmi Kuttippurathu ◽  
Biswanath Patra ◽  
Jan B. Hoek ◽  
Rajanikanth Vadigepalli

We demonstrate a novel methodology to identify key immediate early regulatory mechanisms during liver regeneration, which are altered by adaptation to ethanol intake.


Author(s):  
Chao-Hui Chang ◽  
Siim Pauklin

AbstractTransforming growth factor β (TGFβ) signalling pathway switches between anti-tumorigenic function at early stages of cancer formation and pro-tumorigenic effects at later stages promoting cancer metastasis. A similar contrasting role has been uncovered for reactive oxygen species (ROS) in pancreatic tumorigenesis. Down-regulation of ROS favours premalignant tumour development, while increasing ROS level in pancreatic ductal adenocarcinoma (PDAC) enhances metastasis. Given the functional resemblance, we propose that ROS-mediated processes converge with the spatial and temporal activation of TGFβ signalling and thereby differentially impact early tumour growth versus metastatic dissemination. TGFβ signalling and ROS could extensively orchestrate cellular processes and this concerted function can be utilized by cancer cells to facilitate their malignancy. In this article, we revisit the interplay of canonical and non-canonical TGFβ signalling with ROS throughout pancreatic tumorigenesis and metastasis. We also discuss recent insight that helps to understand their conflicting effects on different stages of tumour development. These considerations open new strategies in cancer therapeutics.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Mengzhen Han ◽  
Zhibin Liao ◽  
Furong Liu ◽  
Xiaoping Chen ◽  
Bixiang Zhang

AbstractHepatocellular carcinoma (HCC) is a type of liver cancer with poor prognosis. There have been demonstrated to exist many possible mechanisms in HCC tumorigenesis, and recent investigations have provided some promising therapy targets. However, further mechanisms remain to be researched to improve the therapeutic strategy and diagnosis of HCC. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine which plays critical roles in networks of different cellular processes, and TGF-β signaling has been found to participate in tumor initiation and development of HCC in recent years. Moreover, among the molecules and signaling pathways, researchers paid more attention to lncRNAs (long non-coding RNAs), but the connection between lncRNAs and TGF-βremain poorly understood. In this review, we conclude the malignant procedure which lncRNAs and TGF-β involved in, and summarize the mechanisms of lncRNAs and TGF-βin HCC initiation and development. Furthermore, the interaction between lncRNA and TGF-β are paid more attention, and the potential therapy targets are mentioned.


2019 ◽  
Vol 20 (22) ◽  
pp. 5528 ◽  
Author(s):  
Jessica Endig ◽  
Ludmilla Unrau ◽  
Paulina Sprezyna ◽  
Sebasting Rading ◽  
Meliha Karsak ◽  
...  

Myeloid cells are essential for the initiation and termination of innate and adaptive immunity that create homeostasis in the liver. Smad7 is an inhibitor of the transforming growth factor β (TGF-β) signaling pathway, which regulates inflammatory cellular processes. Knockdown of Smad7 in hepatocytes has been shown to promote liver fibrosis, but little is known about the effects of Smad7 in myeloid cells during inflammatory responses in the liver. Using mice with a myeloid-specific knockdown of Smad7 (LysM-Cre Smad7fl/fl), we investigated the impact of Smad7 deficiency in myeloid cells on liver inflammation and regeneration using the well-established model of CCl4-mediated liver injury. Early (24/48 h) and late (7 d) time points were analyzed. We found that CCl4 induces severe liver injury, with elevated serum ALT levels, centrilobular and periportal necrosis, infiltrating myeloid cells and an increase of inflammatory cytokines in the liver. Furthermore, as expected, inflammation peaked at 24 h and subsided after 7 d. However, the knockdown of Smad7 in myeloid cells did not affect any of the investigated parameters in the CCl4-treated animals. In summary, our results suggest that the inhibition of TGF-β signaling via Smad7 expression in myeloid cells is dispensable for the induction and control of acute CCl4-induced liver injury.


Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4589-4596 ◽  
Author(s):  
Mei Dong ◽  
Gerard C. Blobe

AbstractThe transforming growth factor-β (TGF-β) signaling pathway is an essential regulator of cellular processes, including proliferation, differentiation, migration, and cell survival. During hematopoiesis, the TGF-β signaling pathway is a potent negative regulator of proliferation while stimulating differentiation and apoptosis when appropriate. In hematologic malignancies, including leukemias, myeloproliferative disorders, lymphomas, and multiple myeloma, resistance to these homeostatic effects of TGF-β develops. Mechanisms for this resistance include mutation or deletion of members of the TGF-β signaling pathway and disruption of the pathway by oncoproteins. These alterations define a tumor suppressor role for the TGF-β pathway in human hematologic malignancies. On the other hand, elevated levels of TGF-β can promote myelofibrosis and the pathogenesis of some hematologic malignancies through their effects on the stroma and immune system. Advances in the TGF-β signaling field should enable targeting of the TGF-β signaling pathway for the treatment of hematologic malignancies.


2008 ◽  
Vol 295 (5) ◽  
pp. F1303-F1312 ◽  
Author(s):  
Pál Pacher ◽  
Kumar Sharma ◽  
György Csordás ◽  
Yanqing Zhu ◽  
György Hajnóczky

Transforming growth factor-β (TGF-β) has been implicated as a key factor in mediating many cellular processes germane to disease pathogenesis, including diabetic vascular complications. TGF-β alters cytosolic [Ca2+] ([Ca2+]c) signals, which in some cases may result from the downregulation of the IP3 receptor Ca2+ channels (IP3R). Ca2+ released by IP3Rs is effectively transferred from endoplasmic reticulum (ER) to the mitochondria to stimulate ATP production and to allow feedback control of the Ca2+ mobilization. To assess the effect of TGF-β on the ER-mitochondrial Ca2+ transfer, we first studied the [Ca2+]c and mitochondrial matrix Ca2+ ([Ca2+]m) signals in single preglomerular afferent arteriolar smooth muscle cells (PGASMC). TGF-β pretreatment (24 h) decreased both the [Ca2+]c and [Ca2+]m responses evoked by angiotensin II or endothelin. Strikingly, the [Ca2+]m signal was more depressed than the [Ca2+]c signal and was delayed. In permeabilized cells, TGF-β pretreatment attenuated the rate but not the magnitude of the IP3-induced [Ca2+]c rise, yet caused massive depression of the [Ca2+]m responses. ER Ca2+ storage and mitochondrial uptake of added Ca2+ were not affected by TGF-β. Also, TGF-β had no effect on mitochondrial distribution and on the ER-mitochondrial contacts assessed by two-photon NAD(P)H imaging and electron microscopy. Downregulation of both IP3R1 and IP3R3 was found in TGF-β-treated PGASMC. Thus, TGF-β causes uncoupling of mitochondria from the ER Ca2+ release. The sole source of this would be suppression of the IP3R-mediated Ca2+ efflux, indicating that the ER-mitochondrial Ca2+ transfer depends on the maximal rate of Ca2+ release. The impaired ER-mitochondrial coupling may contribute to the vascular pathophysiology associated with TGF-β production.


2007 ◽  
Vol 185 (1-3) ◽  
pp. 157-161 ◽  
Author(s):  
Jiri Zavadil ◽  
Manisha Narasimhan ◽  
Miroslav Blumenberg ◽  
Robert J. Schneider

2010 ◽  
Vol 44 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Inga K Johnsen ◽  
Felix Beuschlein

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands that impact on a multitude of biological processes including cell type specification, differentiation and organogenesis. Furthermore, a large body of evidence points towards important BMP-dependent mechanisms in tumorigenesis. In accordance with their diverse actions, BMPs have been demonstrated to serve as auto-, para- and endocrine modulators also in a number of hormonal systems. In this review, we highlight novel aspects of BMP-dependent regulatory networks that pertain to adrenal physiology and disease, which have been uncovered during recent years. These aspects include the role of BMP-dependent mechanism during adrenal development, modulating effects on catecholamine synthesis and steroidogenesis and dysregulation of BMP signalling in adrenal tumorigenesis. Furthermore, we summarize potential therapeutic approaches that are based on reconstitution of BMP signalling in adrenocortical tumour cells.


Sign in / Sign up

Export Citation Format

Share Document