scholarly journals The Pancreatic β-Cell: A Bioenergetic Perspective

2016 ◽  
Vol 96 (4) ◽  
pp. 1385-1447 ◽  
Author(s):  
David G. Nicholls

The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.



Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1087
Author(s):  
Dahae Lee ◽  
Jin Su Lee ◽  
Jurdas Sezirahiga ◽  
Hak Cheol Kwon ◽  
Dae Sik Jang ◽  
...  

Chocolate vine (Akebia quinata) is consumed as a fruit and is also used in traditional medicine. In order to identify the bioactive components of A. quinata, a phytosterol glucoside stigmasterol-3-O-β-d-glucoside (1), three triterpenoids maslinic acid (2), scutellaric acid (3), and hederagenin (4), and three triterpenoidal saponins akebia saponin PA (5), hederacoside C (6), and hederacolchiside F (7) were isolated from a 70% EtOH extract of the fruits of A. quinata (AKQU). The chemical structures of isolates 1–7 were determined by analyzing the 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data. Here, we evaluated the effects of AKQU and compounds 1–7 on insulin secretion using the INS-1 rat pancreatic β-cell line. Glucose-stimulated insulin secretion (GSIS) was evaluated in INS-1 cells using the GSIS assay. The expression levels of the proteins related to pancreatic β-cell function were detected by Western blotting. Among the isolates, stigmasterol-3-O-β-d-glucoside (1) exhibited strong GSIS activity and triggered the overexpression of pancreas/duodenum homeobox protein-1 (PDX-1), which is implicated in the regulation of pancreatic β-cell survival and function. Moreover, isolate 1 markedly induced the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), and Akt, which regulate the transcription of PDX-1. The results of our experimental studies indicated that stigmasterol-3-O-β-d-glucoside (1) isolated from the fruits of A. quinata can potentially enhance insulin secretion, and might alleviate the reduction in GSIS during the development of T2DM.



Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1129
Author(s):  
Chi Woo Yoon ◽  
Nan Sook Lee ◽  
Kweon Mo Koo ◽  
Sunho Moon ◽  
Kyosuk Goo ◽  
...  

In glucose-stimulated insulin secretion (GSIS) of pancreatic β-cells, the rise of free cytosolic Ca2+ concentration through voltage-gated calcium channels (VGCCs) triggers the exocytosis of insulin-containing granules. Recently, mechanically induced insulin secretion pathways were also reported, which utilize free cytosolic Ca2+ ions as a direct regulator of exocytosis. In this study, we aimed to investigate intracellular Ca2+ responses on the HIT-T15 pancreatic β-cell line upon low-intensity pulsed ultrasound (LIPUS) stimulation and found that ultrasound induces two distinct types of intracellular Ca2+ oscillation, fast-irregular and slow-periodic, from otherwise resting cells. Both Ca2+ patterns depend on the purinergic signaling activated by the rise of extracellular ATP or ADP concentration upon ultrasound stimulation, which facilitates the release through mechanosensitive hemichannels on the plasma membrane. Further study demonstrated that two subtypes of purinergic receptors, P2X and P2Y, are working in a competitive manner depending on the level of glucose in the cell media. The findings can serve as an essential groundwork providing an underlying mechanism for the development of a new therapeutic approach for diabetic conditions with further validation.



Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4065-4073 ◽  
Author(s):  
Xiongfei Zhang ◽  
Wei Yong ◽  
Jinghuan Lv ◽  
Yunxia Zhu ◽  
Jingjing Zhang ◽  
...  

Abstract Forkhead Box O1 (FoxO1) is a key transcription regulator of insulin/IGF-I signaling pathway, and its activity can be increased by dexamethasone (DEX) in several cell types. However, the role of FoxO1 in DEX-induced pancreatic β-cell dysfunction has not been fully understood. Therefore, in this study, we investigated whether FoxO1 could mediate DEX-induced β-cell dysfunction and the possible underlying mechanisms in pancreatic β-cell line RINm5F cells and primary rat islet. We found that DEX markedly increased FoxO1 mRNA and protein expression and decreased FoxO1 phosphorylation through the Akt pathway, which resulted in an increase in active FoxO1 in RINm5F cells and isolated rat islets. Activated FoxO1 subsequently inhibited pancreatic duodenal homeobox-1 expression and induced nuclear exclusion of pancreatic duodenal homeobox-1. Knockdown of FoxO1 by RNA interference restored the expression of pancreatic duodenal homeobox-1 and prevented DEX-induced dysfunction of glucose-stimulated insulin secretion in rat islets. Together, the results of present study demonstrate that FoxO1 is integrally involved in DEX-induced inhibition of pancreatic duodenal homeobox-1 and glucose-stimulated insulin secretion dysfunction in pancreatic islet β-cells. Inhibition of FoxO1 can effectively protect β-cells against DEX-induced dysfunction.



2020 ◽  
Author(s):  
Ada Admin ◽  
Christopher J. Barker ◽  
Fernando Henrique Galvão Tessaro ◽  
Sabrina de Souza Ferreira ◽  
Rafael Simas ◽  
...  

Glucose-stimulated insulin secretion is the hallmark of the pancreatic β-cell, a critical player in the regulation of blood glucose concentration. In 1974 Dawson, Freinkel and co-workers made the remarkable observation that an efflux of intracellular inorganic phosphate (P<sub>i</sub>) accompanied the events of stimulated insulin secretion. The mechanism behind this ‘phosphate flush’, its association with insulin secretion and its regulation have since then remained a mystery. We recapitulated the phosphate flush in the MIN6m9 β-cell line and pseudoislets. We demonstrated that knockdown of XPR1, a phosphate transporter present in MIN6m9 cells and pancreatic islets, prevented this flush. Concomitantly, XPR1 silencing led to intracellular P<sub>i</sub> accumulation and a potential impact on Ca<sup>2+</sup> signaling. XPR1 knockdown slightly blunted first phase glucose-stimulated insulin secretion in MIN6m9 cells, but had no significant impact on pseudoislet secretion. In keeping with other cell types, basal P<sub>i</sub> efflux was stimulated by inositol pyrophosphates and basal intracellular P<sub>i</sub> accumulated following knockdown of inositol hexakisphosphate kinases. However, the glucose-driven phosphate flush occurred despite inositol pyrophosphate depletion. Finally, whilst it is unlikely that XPR1 directly affects exocytosis, it may protect Ca<sup>2+ </sup>signaling. Thus we have revealed XPR1 as the missing mediator of the phosphate flush, shedding light on a 45-year-old mystery.



Endocrinology ◽  
2008 ◽  
Vol 150 (5) ◽  
pp. 2072-2079 ◽  
Author(s):  
Eva Hammar ◽  
Alejandra Tomas ◽  
Domenico Bosco ◽  
Philippe A. Halban

Extracellular matrix has a beneficial impact on β-cell spreading and function, but the underlying signaling pathways have yet to be fully elucidated. In other cell types, Rho, a well-characterized member of the family of Rho GTPases, and its effector Rho-associated kinase (ROCK), play an important role as downstream mediators of outside in signaling from extracellular matrix. Therefore, a possible role of the Rho-ROCK pathway in β-cell spreading, actin cytoskeleton dynamics, and function was investigated. Rho was inhibited using a new cell-permeable version of C3 transferase, whereas the activity of ROCK was repressed using the specific ROCK inhibitors H-1152 and Y-27632. Inhibition of Rho and of ROCK increased spreading and improved both short-term and prolonged glucose-stimulated insulin secretion but had no impact on basal secretion. Inhibition of this pathway led to a depolymerization of the actin cytoskeleton. Furthermore, the impact of the inhibition of ROCK on stimulated insulin secretion was acute and reversible, suggesting that rapid signaling such as phosphorylation is involved. Finally, quantification of the activity of RhoA indicated that the extracellular matrix represses RhoA activity. Overall these results show for the first time that the Rho-ROCK signaling pathway contributes to the stabilization of the actin cytoskeleton and inhibits glucose-stimulated insulin secretion in primary pancreatic β-cells. Furthermore, they indicate that inhibition of this pathway might be one of the mechanisms by which the extracellular matrix exerts its beneficial effects on pancreatic β-cell function.





2021 ◽  
Author(s):  
Casey J. Bauchle ◽  
Kristen E. Rohli ◽  
Cierra K. Boyer ◽  
Vidhant Pal ◽  
Jonathan V. Rocheleau ◽  
...  

The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC to glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout mice and demonstrate these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme, cytosolic isocitrate dehydrogenase, Idh1, inhibited insulin secretion in wild type islets, but failed to impact β-cell function in β-cell CIC KO islets.<b> </b>Our data demonstrate that the mitochondrial citrate-isocitrate carrier is not required for glucose-stimulated insulin secretion, and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.



2014 ◽  
Vol 53 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Zhipeng Li ◽  
Zhaoshui Shangguan ◽  
Yijie Liu ◽  
Jihua Wang ◽  
Xuejun Li ◽  
...  

Pancreatic β-cell loss because of apoptosis is the major cause of type 1 diabetes (T1D) and late stage T2D. Puerarin possesses anti-diabetic properties; whether it acts directly on pancreatic β-cell is not clear. This study was designed to investigate the effects of puerarin on pancreatic β-cell survival and function. Diabetes was induced in male C57BL/6 mice by a single peritoneal injection of streptozotocin (STZ). Pancreatic β-cell survival and function were assessed in diabetic mice by measuring β-cell apoptosis, β-cell mass, pancreatic insulin content, and glucose tolerance, and in cultured islets and clonial MIN6 β-cells by measuring β-cell viability and apoptosis and glucose-stimulated insulin secretion. We found that pre-treatment with puerarin decreased the incidence of STZ-induced diabetes. Puerarin increased pancreatic β-cell mass via β-cell apoptosis inhibition in diabetic mice, and increased serum insulin, whereas it decreased blood glucose levels and improved glucose tolerance. In cultured islets and MIN6 cells, puerarin protected β-cell from cobalt chloride (CoCl2)-induced apoptosis and restored the impaired capacity of glucose-stimulated insulin secretion. Puerarin protection of β-cell survival involved the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. In conclusion, puerarin protects pancreatic β-cell function and survival via direct effects on β-cells, and its protection of β-cell survival is mediated by the PI3K/Akt pathway. As a safe natural plant extraction, puerarin might serve as a preventive and/or therapeutic approach for diabetes.



Sign in / Sign up

Export Citation Format

Share Document