Ion Transport Pathology in the Mechanism of Sickle Cell Dehydration

2005 ◽  
Vol 85 (1) ◽  
pp. 179-200 ◽  
Author(s):  
Virgilio L. Lew ◽  
Robert M. Bookchin

Polymers of deoxyhemoglobin S deform sickle cell anemia red blood cells into sickle shapes, leading to the formation of dense, dehydrated red blood cells with a markedly shortened life-span. Nearly four decades of intense research in many laboratories has led to a mechanistic understanding of the complex events leading from sickling-induced permeabilization of the red cell membrane to small cations, to the generation of the heterogeneity of age and hydration condition of circulating sickle cells. This review follows chronologically the major experimental findings and the evolution of guiding ideas for research in this field. Predictions derived from mathematical models of red cell and reticulocyte homeostasis led to the formulation of an alternative to prevailing gradualist views: a multitrack dehydration model based on interactive influences between the red cell anion exchanger and two K+transporters, the Gardos channel (hSK4, hIK1) and the K-Cl cotransporter (KCC), with differential effects dependent on red cell age and variability of KCC expression among reticulocytes. The experimental tests of the model predictions and the amply supportive results are discussed. The review concludes with a brief survey of the therapeutic strategies aimed at preventing sickle cell dehydration and with an analysis of the main open questions in the field.

Anemia ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Erwin Weiss ◽  
David Charles Rees ◽  
John Stanley Gibson

Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates entry, providing an obvious link with phosphatidylserine exposure. The role of was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [] was increased. This effect was inhibited by dipyridamole, intracellular chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high saline. levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with entry through the deoxygenation-induced pathway (), activating the Gardos channel. [] required for phosphatidylserine scrambling are in the range achievablein vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Yuanbin Song ◽  
Rana Gbyli ◽  
Liang Shan ◽  
Wei Liu ◽  
Yimeng Gao ◽  
...  

In vivo models of human erythropoiesis with generation of circulating mature human red blood cells (huRBC) have remained elusive, limiting studies of primary human red cell disorders. In our prior study, we have generated the first combined cytokine-liver humanized immunodeficient mouse model (huHepMISTRG-Fah) with fully mature, circulating huRBC when engrafted with human CD34+ hematopoietic stem and progenitor cells (HSPCs)1. Here we present for the first time a humanized mouse model of human sickle cell disease (SCD) which replicates the hallmark pathophysiologic finding of vaso-occlusion in mice engrafted with primary patient-derived SCD HSPCs. SCD is an inherited blood disorder caused by a single point mutation in the beta-globin gene. Murine models of SCD exclusively express human globins in mouse red blood cells in the background of murine globin knockouts2 which exclusively contain murine erythropoiesis and red cells and thus fail to capture the heterogeneity encountered in patients. To determine whether enhanced erythropoiesis and most importantly circulating huRBC in engrafted huHepMISTRG-Fah mice would be sufficient to replicate the pathophysiology of SCD, we engrafted it with adult SCD BM CD34+ cells as well as age-matched control BM CD34+ cells. Overall huCD45+ and erythroid engraftment in BM (Fig. a, b) and PB (Fig. c, d) were similar between control or SCD. Using multispectral imaging flow cytometry, we observed sickling huRBCs (7-11 sickling huRBCs/ 100 huRBCs) in the PB of SCD (Fig. e) but not in control CD34+ (Fig. f) engrafted mice. To determine whether circulating huRBC would result in vaso-occlusion and associated findings in SCD engrafted huHepMISTRG-Fah mice, we evaluated histological sections of lung, liver, spleen, and kidney from control and SCD CD34+ engrafted mice. SCD CD34+ engrafted mice lungs showed an increase in alveolar macrophages (arrowheads) associated with alveolar hemorrhage and thrombosis (arrows) but not observed control engrafted mice (Fig. g). Spleens of SCD engrafted mice showed erythroid precursor expansion, sickled erythrocytes in the sinusoids (arrowheads), and vascular occlusion and thrombosis (arrows) (Fig. h). Liver architecture was disrupted in SCD engrafted mice with RBCs in sinusoids and microvascular thromboses (Fig. i). Congestion of capillary loops and peritubular capillaries and glomeruli engorged with sickled RBCs was evident in kidneys (Fig. j) of SCD but not control CD34+ engrafted mice. SCD is characterized by ineffective erythropoiesis due to structural abnormalities in erythroid precursors3. As a functional structural unit, erythroblastic islands (EBIs) represent a specialized niche for erythropoiesis, where a central macrophage is surrounded by developing erythroblasts of varying differentiation states4. In our study, both SCD (Fig. k) and control (Fig. l) CD34+ engrafted mice exhibited EBIs with huCD169+ huCD14+ central macrophages surrounded by varying stages of huCD235a+ erythroid progenitors, including enucleated huRBCs (arrows). This implies that huHepMISTRG-Fah mice have the capability to generate human EBIs in vivo and thus represent a valuable tool to not only study the effects of mature RBC but also to elucidate mechanisms of ineffective erythropoiesis in SCD and other red cell disorders. In conclusion, we successfully engrafted adult SCD patient BM derived CD34+ cells in huHepMISTRG-Fah mice and detected circulating, sickling huRBCs in the mouse PB. We observed pathological changes in the lung, spleen, liver and kidney, which are comparable to what is seen in the established SCD mouse models and in patients. In addition, huHepMISTRG-Fah mice offer the opportunity to study the role of the central macrophage in human erythropoiesis in health and disease in an immunologically advantageous context. This novel mouse model could therefore serve to open novel avenues for therapeutic advances in SCD. Reference 1. Song Y, Shan L, Gybli R, et. al. In Vivo reconstruction of Human Erythropoiesis with Circulating Mature Human RBCs in Humanized Liver Mistrg Mice. Blood. 2019;134:338. 2. Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mouse model of sickle cell disease. Science. 1997;278(5339):873-876. 3. Blouin MJ, De Paepe ME, Trudel M. Altered hematopoiesis in murine sickle cell disease. Blood. 1999;94(4):1451-1459. 4. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008;82:23-53. Disclosures Xu: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Flavell:Zai labs: Consultancy; GSK: Consultancy.


1989 ◽  
Vol 203 ◽  
pp. 381-400 ◽  
Author(s):  
D. Halpern ◽  
T. W. Secomb

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1577-1584 ◽  
Author(s):  
Kitty de Jong ◽  
Renee K. Emerson ◽  
James Butler ◽  
Jacob Bastacky ◽  
Narla Mohandas ◽  
...  

Several transgenic murine models for sickle cell anemia have been developed that closely reproduce the biochemical and physiological disorders in the human disease. A comprehensive characterization is described of hematologic parameters of mature red blood cells, reticulocytes, and red cell precursors in the bone marrow and spleen of a murine sickle cell model in which erythroid cells expressed exclusively human α, γ, and βS globin. Red cell survival was dramatically decreased in these anemic animals, partially compensated by considerable enhancement in erythropoietic activity. As in humans, these murine sickle cells contain a subpopulation of phosphatidylserine-exposing cells that may play a role in their premature removal. Continuous in vivo generation of this phosphatidylserine-exposing subset may have a significant impact on the pathophysiology of sickle cell disease.


1983 ◽  
Vol 244 (5) ◽  
pp. C313-C317 ◽  
Author(s):  
J. C. Parker

Recent demonstrations of chloride-associated passive potassium movements in red blood cells of humans, ducks, sheep, and toadfish prompted a reinvestigation of potassium permeability in dog red blood cells. Early observations of Davson (J. Physiol. London 101:265-283, 1942) had shown that replacement of chloride by nitrate and thiocyanate caused a greatly increased rate of potassium flux across the dog red cell membrane. This finding seemed at variance with results in other species in which chloride replacement caused a fall in potassium flux. The present data indicate that passive potassium movements in swollen dog red blood cells are chloride dependent and furosemide sensitive, as shown for the cells of other species. Davson's findings were demonstrated to be due to the inclusion of small quantities of calcium in the medium under circumstances that favored calcium entry into the cells, thus opening the calcium-activated potassium channel described by Gardos (Curr. Top. Membr. Transp. 10:217-277, 1978 and Nature London 279:248-250, 1979). Potassium movements through the latter channel were stimulated when chloride was replaced by more permeant anions, such as nitrate and thiocyanate, which also increased the rate of net potassium movements in valinomycin-treated cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 819-819 ◽  
Author(s):  
Winfred C. Wang ◽  
Cathie Snyder ◽  
Carlo Brugnara ◽  
Marilyn J. Telen ◽  
Martin H Steinberg ◽  
...  

Abstract Abstract 819 Background. HbSC is characterized by increased red cell density and clinical complications but has rarely been the target of therapeutic trials. The CHAMPS Trial was a prospective, randomized, double-blinded, multi-center Phase II study of HU and Mg in children and adults with HbSC conducted by the Comprehensive Sickle Cell Centers Clinical Trials Consortium. HU is clinically efficacious in HbSS, but its value has not been demonstrated for HbSC; Mg reduces cation transport activity and improves hydration of HbSS erythrocytes. The primary objective of the trial was to measure the ability of HU and Mg individually and in combination to reduce the density of HbSC erythrocytes. Secondary objectives were to determine the effects of the 2 agents on hematologic parameters and red cell pathobiology, to identify toxicities of HU and Mg, and to record adverse events. Methods. Eligible subjects had HbSC and at least 1 vaso-occlusive event in the previous 12 months (but none in the 4 weeks before study entry) and were ≥ age 5 years. After providing informed consent and baseline evaluations, subjects were randomized to 1 of 4 arms: (A) HU (20 mg/kg/d PO) and Mg (0.6 mEq/kg/d PO in 2 doses), (B) HU and placebo for Mg, (C) HU placebo and Mg, or (D) placebos for both. Subjects were evaluated at 2 or 4 week intervals for 11 months (15 visits). In addition to physical exams, blood counts and chemistry profiles, subjects had central lab evaluations [including measurements of red cell density (by Advia instrument), HbF, red cell cation content, KCl co-transport and Gardos channel activity, cell adhesion to endothelial cells and laminin, and erythrocyte membrane phosphatidyl serine (PS exposure)] at baseline (twice) and weeks 8, 16, 24, and 44. The primary endpoint was red cell density measured at week 8. Results. Forty-four subjects (median age 13.6 years, range 5-53, 73% < age 16) had baseline evaluations and were randomized, 36 reached the primary endpoint and 22 completed 11 months on study drugs. The trial was halted prematurely because of slow enrollment. Subjects in the HU groups (A and B) had increased red cell MCV, cell Hb and HbF compared to baseline and to groups C and D at week 8 (p<0.001); these differences were further increased at week 24 (Table). Mg did not have measurable effects. No differences were seen among the groups in Hb level, hyperdense red cells, erythrocyte Na, K, and Mg, KCl co-transport and Gardos channel activity, plasma magnesium, serum LDH, red cell PS exposure and adhesion to endothelium. Adults did not differ significantly from children. Ten acute events required ER visits/hospitalizations in group A, 15 in group B, 15 in group C, and 19 in group D (differences not significant). Average compliance with HU/HU placebo was approximately 83% and Mg/Mg placebo 77%. No significant toxicity was associated with HU or Mg alone or in combination. Conclusions. HU had significant effects on HbSC erythrocytes, including increased HbF and MCV, with increasing response over 6 months. Mg at a dose of 0.6 mEq/kg/d had no measurable effect on red cell properties or endothelial interactions, either alone or in combination with HU. This may have been related to suboptimal dosing, since the maximum tolerated dose was recently found to be 0.9 mEq/kg/d. Differences in acute events, although not significant, suggest a need for studies with larger enrollment. These data provide a basis for performing clinical efficacy trials using HU, perhaps at higher doses, in subjects with HbSC disease. Disclosures: Off Label Use: Hydroxyurea is being tested for its effects on red blood cells in persons with HbSC disease. Magnesium pidolate is being tested for its effects on red blood cells in persons with HbSC disease.


2004 ◽  
Vol 92 (12) ◽  
pp. 1269-1272 ◽  
Author(s):  
Wiebke Tabellion ◽  
Peter Lipp ◽  
Ingolf Bernhardt ◽  
Lars Kaestner

SummaryProstaglandin E2 (PGE2) is released from platelets when they are activated. Using fluorescence imaging and the patch-clamp technique, we provide evidence that PGE2 at physiological concentrations (10−10 M) activates calcium rises mediated by calcium influx through a non-selective cation-channel in human red blood cells. The extent of calcium increase varied between cells with a total of 45% of the cells responding. It is well known that calcium increases elicited the calcium-activated potassium channel (Gardos channel) in the red cell membrane. Previously, it was shown that the Gardos channel activation results in potassium efflux and shrinkage of the cells. Therefore, we conclude that the PGE2 responses of red blood cells described here reveal a direct and active participation of erythrocytes in blood clot formation.


2012 ◽  
Vol 27 (2) ◽  
pp. 750-759 ◽  
Author(s):  
Lucia De Franceschi ◽  
Robert S. Franco ◽  
Mariarita Bertoldi ◽  
Carlo Brugnara ◽  
Alessandro Matté ◽  
...  

1985 ◽  
Vol 63 (7) ◽  
pp. 804-808 ◽  
Author(s):  
Karin J. Neufeld ◽  
Cindy L. Lederman ◽  
Patrick C. Choy ◽  
Ricky Y. K. Man

The production of arrhythmias in the isolated heart by perfusion with lysophosphatidylcholine has been well documented. However, the role of the lysophospholipid as a physiological factor in the generation of cardiac arrhythmias is not clear. In this study, a pharmacological approach was used to delineate the physiological significance of lysophosphatidylcholine during this cardiac dysfunction. Lidocaine (5–20 mg/L) was found to be effective in the protection of the isolated rat heart from the lysophospholipid-induced arrhythmias at pharmacological concentrations. The effect of lidocaine in the protection of lysophospholipid-induced membrane dysfunction was studied with red blood cells. Lidocaine (2 mg/mL) protected red blood cells from hemolysis in the presence of lysophosphatidylcholine. Lidocaine did not inhibit the binding of the lysophospholipid to the red cell membrane, but inhibited hemolysis in a manner similar to cholesterol. The results are consistent with the postulate that lysophosphatidylcholine is a physiological factor in the pathogenesis of cardiac arrhythmias during myocardial ischemia.


Sign in / Sign up

Export Citation Format

Share Document