X-Ray Investigation of a 2H-3C Phase-Transformation in Silicon Carbide Single Crystals

1970 ◽  
Vol 14 ◽  
pp. 67-77 ◽  
Author(s):  
P. Krishna ◽  
R. C. Marshall

AbstractThis paper reports the results of a detailed X-ray diffraction study of a new phase-transformation observed in SiC crystals grown by a vapour-liquid-solid mechanism involving the hydrogen-reduction of methyltrichlorosilane. The 10.ℓ reciprocal lattice rows of these crystals, as recorded on X-ray diffraction photographs, reveal sharp reflections corresponding to the hexagonal close-packed 2H (ABAB….) structure and sometimes also corresponding to the cubic close-packed 3C (ABCABC…) structure. These reflections are invariably connected by a diffuse but continuous streak whose intensity is a measure of the random faulting on the basal planes. The crystals were needle shaped and the structure sometimes varied along their length.Several crystals were annealed in an inert atmosphere at progressively higher temperatures and their 10.ℓ reciprocal lattice row re-examined to determine the annealing behaviour as well as possible structural transformations. For a number of dark green needles having a faulted 2H structure the 2H reflections disappeared around 1400° C and the 10.ℓ reciprocal lattice row revealed only a continuous streak with increased intensity around positions for 3C reflections. On further heating the structure went over to a strongly faulted 3C. Around 1600°C the appearance of a 6H structure became discernible while highly diffuse 30 reflections still persisted. The reversible part of the transformations, if any, could not be observed. Some of the structures were, however, found to be much more stable and did not transform even up to 1650° C.The above results, in particular the discovery of a 2H-3C phase-transformation around 1400°C, throw fresh light on the thermodynamic stability of the different SiC types. The mechanism of the 2H-3C transformation, the possible influence of faults and impurities and the thermal stability of various SiC structures are discussed on the basis of the experimental results stated above.

2010 ◽  
Vol 638-642 ◽  
pp. 3722-3726 ◽  
Author(s):  
Yuichi Komizo ◽  
Hidenori Terasaki

Time-resolved X-Ray Diffraction (TRXRD) experments were carried out to identify the phase transformation during welding in-situ. For the martensitic steel weld with different chemical compositions, the solidification behavior was directly analyzed in the time-resolution of 0.01 seconds. The halo pattern from the weld pool gives basis to observe the phase transformation during solidification process of weld. Furthermore, the latest development of TRXRD system was outlined. The importance of detector area was discussed and brand-new TRXRD system in real and reciprocal lattice space was presented.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


2017 ◽  
Vol 36 (3) ◽  
pp. 822-828
Author(s):  
SG Bawa ◽  
AS Ahmed ◽  
PC Okonkwo

Thermal stability of transitional alumina phases produced from ammonium alum using Kankara kaolin as starting material was studied. Wet beneficiation method was employed to purify the starting material, after which it was calcined and dealuminated with sulphuric acid. The elemental composition, mineralogical, and physiological analyses were carried out using X-ray fluorescence (XRF), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques respectively. The ammonium alum was thermally treated by varying the calcination temperature from 700 to 1200°C and varying the time of calcination from 1 to 4 h. The formation of gamma alumina began at calcination temperature of 825°C for calcination time of 3 h, which was found to be lower than reported works of 900°C. It was found to be stable at higher temperature of 1125°C, above which phase transformation to alpha alumina was observed. The observed wide range of thermal stability of the gamma alumina phase gives it good advantage to be used for high temperature applications, such as support for catalyst promoters. Alpha alumina phase formation began at 1150°C and was fully formed at 1200°C. BET specific surface area of 166 m2/g was obtained for the gamma alumina phase which was high enough for it application as support for catalyst, catalyst and adsorbent. http://dx.doi.org/10.4314/njt.v36i3.23


1973 ◽  
Vol 28 (9-10) ◽  
pp. 600-605 ◽  
Author(s):  
Karl-Friedrich Tebbe ◽  
Hans Georg Schnering ◽  
Barbara Rüter ◽  
Gisela Rabeneck

Besides ‘Li2Al’ which was recently shown to be the phase Li9Al4 there exists the phase Li3Al2 characterized by preparation and X-ray diffraction methods. It cristallizes with a rhomboedric unit cell, R3̄m, a = 4.508 Å, c = 14.26 Å and z = 3 formula units (hexagonal setting). The structure can be looked at as a variant of the body centred cubic packing with Αl-atom layers of puckered six membered rings. The structural relation of the phases LiAl, Li3Al2, Li9Al4, Li is discussed.


2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


Sign in / Sign up

Export Citation Format

Share Document