scholarly journals Tribochemistry and EP Activity Assessment of Mo-S Complexes in Lithium-Base Greases

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tarunendr Singh

The blends of bis(1,5-diaryl-2,4-dithiomalonamido)dioxomolybdenum(VI) complexes in lithium-base grease are evaluated for their extreme pressure activity in a “four-ball test” using 12.7 mm diameter alloy steel ball specimen. The additive, bis(1,5-di-p-methoxyphenyl-2,4-dithiomalonamido)dioxomolybdenum(VI) and bis(1,5-di-p-chloro-phenyl-2,4-dithiomalonamido)dioxomolybdenum(VI) exhibited lower values of wear-scar diameter at higher load and higher values of weld load, flash temperature parameter, and pressure wear index as compared with lithium-base grease without additives. The greases fortified with the developed additives prevent rusting and corrosion of bearings while grease containing no additives did not pass these tests as per the standard tests. These greases have also better oxidation protection as compared to the grease that has no additive. The topography and tribochemistry of the wear-scar surface are carried out by means of scanning electron microscopy and Auger electron spectroscopy techniques, respectively.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
R. B. Rastogi ◽  
J. L. Maurya ◽  
V. Jaiswal ◽  
D. Tiwary

Testing of lanthanum complexes of 1-aryl-2,5-dithiohydrazodicarbonamides of the formula LaL3 [LH=1-phenyl-2,5-dithiohydrazodicarbonamide(PhTHC), 1-methylphenyl-2,5-dithiohydrazodicarbon-amide(p-MePhTHC), 1-methoxyphenyl-2,5-dithiohydrazodicarbonamide(p-MeOPhTHC), 1-phenyl-2,5-dithiohydrazodicarbonamide(p-ClPhTHC)] for their application as extreme pressure lubrication (EPL) additives was performed on four ball tester using steel balls of 12.7 mm diameter and MoS2 as reference additive. The efficiency of the complexes has been evaluated using the tribological parameters, wear scar diameter, friction coefficient, initial seizure load, 2.5 s seizure delay load, weld load, mean Hertz load, flash temperature parameter and pressure wear index. The tested complexes behave as good extreme pressure additives; however, the best performance is shown by the p-methoxyphenyl derivative. The surface morphology of the wear scar on steel ball has been studied by atomic force microscopy and scanning electron microscopy. In presence of this complex, roughness of the worn surface is significantly reduced. The composition of wear scar has been analyzed by energy dispersive X-ray spectroscopy. The presence of lanthanum and sulfur in energy dispersive X-ray spectrum emphasizes role of additive in the tribofilm formed on the surface.


Author(s):  
Rajeev Nayan Gupta ◽  
AP Harsha

The aim of the present study is to examine the antiwear, antifriction, and extreme pressure performance of castor oil with nano-additives by using a four-ball tester. CeO2 (≈90 nm) and polytetrafluroethylene (≈150 nm) nanoparticles were used as an additive in castor oil with four different concentrations in the range of 0.1–1.0% w/v. The suspension stability of the nanoparticles was improved by using sodium dodecyl sulfate as a dispersant. Different analytical tools were used to characterize the nanoparticles parameter (i.e. shape and size) as well as the worn surfaces. The additive concentration was optimized on the basis of tribological performance. The test results of antiwear and extreme pressure property have been reported on the basis of wear scar diameter and weld load, respectively. For the antiwear test, it was observed that the maximum reduction in the wear scar diameter was 37.4 and 35.3% at an optimum concentration of CeO2 and polytetrafluroethylene additive, respectively. Also, antifriction and load carrying properties of castor oil were significantly improved with the addition of nanoparticles as an additive in a small amount. The mechanism for such improvement in the tribological behavior has also been discussed.


Author(s):  
Yogaraj D ◽  
Jaichandar S

The waste cooking biodiesel's steady-state coefficient of friction rate of fuel blends are B90 (18.2%), B60 (7.2%), B20 (16.72%), B10 (30.8%), and diesel (38.77%) higher compared with B40 fuel blend and wear scar diameter of the fuel blends from B40 to B100 had a minimal range of 0.5mm. The flash temperature parameter results higher from B40 to B100 fuel blends, and the corrosion rate was minimal for B40 and B50 fuel blends. Afterward, the fuel blend B40 (40% WCO+60% Diesel fuel) was chosen as fuel, along with Cerium (25ppm), Zinc (25ppm), and Titanium nanoparticles (25ppm) were selected as fuel additives. The B40+D60+Titanium (25ppm) blend resulted in improved BTE and 3.83% lowered BSEC comparison with diesel fuel. Then the fuel blend, B40+D80+Titanium (25ppm), resulted in 2.08% reduced HC, 36.36% CO, and 16.25% smoke emissions, along with marginally 8.5% higher NOx emissions comparison with diesel fuel. Also, the fuel blend, B40+D80+Titanium (25ppm) combustions characteristics are the equivalent trend of cylinder pressure (58.82 bar) and HRR (66.65 J/deg CA) related to diesel fuel at peak load.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
I. Golshokouh ◽  
Syahrullail S. ◽  
F.N. Ani

This research investigated tribological properties of Jatropha oil (vegetable oil)to find clean, new, and renewable lubricant source of industrial applications. The study was performed utilizing a fourball tribotester, CCD camera, scanning electron microscope (SEM)and viscometer. The experiment was conducted using different normal loads (300, 400, and 500 N) and temperatures (75, 95 and 105°C). The test was followed ASTM D4172 standard. The evaluation was focused on the viscosity, flash temperature parameter, coefficient of friction, wear scar diameter and worn surface observation. All results of Jatropha oil were compared with mineral hydraulic oil to evaluate the lubricity performance of Jatropha oil. The results indicated that the Jatropha had better anti-friction and anti-wear ability than hydraulic mineral oil under various temperature and loads. In conclusion, Jatropha oil has bright possibility to be produced as commercial industrial lubricant.


Lubricating oils containing ester, gaining more importance due to their friction reducing ability. Screening the performance of lubricating oils prior to field test is of most significance for the new lubricant formulations. In this endeavor, six lubricating blends were formulated having variable concentration of additives (sulfur and ester) in mineral oil and screened for their performance using four-ball tribo-tester. The formulated blends were evaluated for their extreme pressure and anti-wear characteristics as per ASTM standards. Tests were conducted on DUCOM TR- 30L four-ball tester and wear scar diameter were measured on an optical microscope.Compatibility and synergy of additives have been discussed on the basis of various parameters such as anti-wear scar diameter, mean scar diameter (just below weld load), mean scar diameter (at last non-seizure load), weld load and load wear index. The findings of this study demonstrate that ester along-with sulfur not only boost anti-wear properties but also enhance load carrying capacity of oil. An addition of sulfur beyond 2 % may not yield any significant improvement of tribo-characteristics of these oils.This paper is highlighting the synergistic effect of additives to render it as suitable lubricant for metal working applications. This paper also suggested an optimum concentration of an additive for its suitability for anti-wear and/(or) extreme-pressure properties.


2018 ◽  
Vol 70 (6) ◽  
pp. 953-960 ◽  
Author(s):  
Qiang He ◽  
Zhigang Wang ◽  
Anling Li ◽  
Yachen Guo ◽  
Songfeng Liu

Purpose Nanoparticles as the grease additives play an important role in anti-wear and friction-reducing property during the mechanical operation. To improve the lubrication action of grease, the tribological behavior of lithium-based greases with single (nanometer Al2O3 or nanometer ZnO) and composite additives (Al2O3–ZnO nanoparticles) were investigated in this paper. Design/methodology/approach The morphology and microstructure of nanoparticles were characterized by means of transmission electron microscope and X-ray diffraction. Tribological properties of different nanoparticles as additives in lithium-based greases were evaluated using a universal friction and wear testing machine. In addition, the friction coefficient (COF) and wear scar diameter were analyzed. The surface morphology and element overlay of the worn steel surface were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Findings The results show that the greases with nanometer Al2O3 or nanometer ZnO and the composite nanoparticles additives both exhibit lower COFs and wear scar diameters than those of base grease. And the grease with Al2O3–ZnO composite nanoparticles possesses much lower COF and shows much better wear resistance than greases with single additives. When the additives contents are 0.4 Wt.% Al2O3 and 0.6 Wt.% ZnO, the composite nanoparticles-based grease exhibits the lowest mean COF (0.04) and wear scar diameter (0.65 mm), which is about 160% and 28% lower than those of base grease, respectively. Originality/value The main innovative thought of this work lies in dealing with the grease using single or composite nanoparticles. And through a serial contrast experiments, the anti-wear and friction-reducing property with different nanoparticles additives in lithium grease are evaluated.


2003 ◽  
Vol 766 ◽  
Author(s):  
Sungjin Hong ◽  
Seob Lee ◽  
Yeonkyu Ko ◽  
Jaegab Lee

AbstractThe annealing of Ag(40 at.% Cu) alloy films deposited on a Si substrate at 200 – 800 oC in vacuum has been conducted to investigate the formation of Cu3Si at the Ag-Si interface and its effects on adhesion and resistivity of Ag(Cu)/Si structure. Auger electron spectroscopy(AES) analysis showed that annealing at 200°C allowed a diffusion of Cu to the Si surface, leading to the significant reduction in Cu concentration in Ag(Cu) film and thus causing a rapid drop in resistivity. In addition, the segregated Cu to the Si surface reacts with Si, forming a continuous copper silicide at the Ag(Cu)/Si interface, which can contribute to an enhanced adhesion of Ag(Cu)/Si annealed at 200 oC. However, as the temperature increases above 300°C, the adhesion tends to decrease, which may be attributed to the agglomeration of copper silicide beginning at around 300°C.


Sign in / Sign up

Export Citation Format

Share Document