Studies on Lanthanum Complexes of 1-Aryl-2,5-Dithiohydrazodicarbonamides in Paraffin Oil as Extreme Pressure Lubrication Additives

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
R. B. Rastogi ◽  
J. L. Maurya ◽  
V. Jaiswal ◽  
D. Tiwary

Testing of lanthanum complexes of 1-aryl-2,5-dithiohydrazodicarbonamides of the formula LaL3 [LH=1-phenyl-2,5-dithiohydrazodicarbonamide(PhTHC), 1-methylphenyl-2,5-dithiohydrazodicarbon-amide(p-MePhTHC), 1-methoxyphenyl-2,5-dithiohydrazodicarbonamide(p-MeOPhTHC), 1-phenyl-2,5-dithiohydrazodicarbonamide(p-ClPhTHC)] for their application as extreme pressure lubrication (EPL) additives was performed on four ball tester using steel balls of 12.7 mm diameter and MoS2 as reference additive. The efficiency of the complexes has been evaluated using the tribological parameters, wear scar diameter, friction coefficient, initial seizure load, 2.5 s seizure delay load, weld load, mean Hertz load, flash temperature parameter and pressure wear index. The tested complexes behave as good extreme pressure additives; however, the best performance is shown by the p-methoxyphenyl derivative. The surface morphology of the wear scar on steel ball has been studied by atomic force microscopy and scanning electron microscopy. In presence of this complex, roughness of the worn surface is significantly reduced. The composition of wear scar has been analyzed by energy dispersive X-ray spectroscopy. The presence of lanthanum and sulfur in energy dispersive X-ray spectrum emphasizes role of additive in the tribofilm formed on the surface.

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Tarunendr Singh

The blends of bis(1,5-diaryl-2,4-dithiomalonamido)dioxomolybdenum(VI) complexes in lithium-base grease are evaluated for their extreme pressure activity in a “four-ball test” using 12.7 mm diameter alloy steel ball specimen. The additive, bis(1,5-di-p-methoxyphenyl-2,4-dithiomalonamido)dioxomolybdenum(VI) and bis(1,5-di-p-chloro-phenyl-2,4-dithiomalonamido)dioxomolybdenum(VI) exhibited lower values of wear-scar diameter at higher load and higher values of weld load, flash temperature parameter, and pressure wear index as compared with lithium-base grease without additives. The greases fortified with the developed additives prevent rusting and corrosion of bearings while grease containing no additives did not pass these tests as per the standard tests. These greases have also better oxidation protection as compared to the grease that has no additive. The topography and tribochemistry of the wear-scar surface are carried out by means of scanning electron microscopy and Auger electron spectroscopy techniques, respectively.


2015 ◽  
Vol 93 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Dong Zhao ◽  
Masoud Kasrai ◽  
Tsun-Kong Sham ◽  
Zhimin Bai ◽  
Fuyan Zhao ◽  
...  

In this study, the synthesis of Co/Al hydrotalcite (layered double hydroxides: LDHs) using insoluble Al(OH)3 by a hydrothermal method is described. The syntheses were conducted under various conditions. The as-prepared Co/Al-CO32–-LDH was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The tribological properties of the products were evaluated in base oil using four-ball and Plint friction testers. The LDH thus synthesized displays perfect hexagonal platelike morphology having a disk diameter in the range of 0.2–1.5 μm with a thickness of 40 nm. The addition of the product Co/Al-CO32–-LDH, as an additive to the base oil, significantly reduces the friction coefficient (22.3%) and wear (26.1%) compared to base oil alone. The morphology and chemistry of the worn surface were characterized by SEM, atomic force microscopy (AFM), and X-ray absorption near-edge structure (XANES) spectroscopy. The results show that the structural distortion of LDH induced by mechanochemical processes during friction consumes the friction force between the rubbed surfaces, and as a result, the friction and the wear is reduced. Thus, our results show that the LDH sheets absorbed on the worn surface can prevent direct contact between the friction pairs (surfaces) and decreases the roughness of the worn surface.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document