scholarly journals Optimum Combination of Insulin-Transferrin-Selenium and Fetal Bovine Serum for Culture of Rabbit Articular Chondrocytes in Three-Dimensional Alginate Scaffolds

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Lanlan Zhang ◽  
Hong Song ◽  
Xiaojun Zhao

Fetal bovine serum (FBS) has been reported to affect chondrocyte biosynthesis in monolayer culture. Insulin-Transferrin-Selenium (ITS) was investigated as a partial replacement for FBS during in vitro culture of rabbit articular chondrocytes in three-dimensional alginate scaffold. Chondrocyte-seeded alginate hydrogels were cultured in Dulbecco's modified Eagle's medium plus 10% FBS, 1% ITS plus 2% FBS, 1% ITS plus 4% FBS, or 1% ITS plus 8% FBS. At designed time point, the Chondrocyte-seeded alginate hydrogels were harvested and evaluated with histological staining, immunohistochemistry, and quantitative gene expression analysis. Viable cell density and cell division were also evaluated. Chondrocytes biosynthesis and cell division in 1% ITS with 2% FBS medium were similar to that in medium added with 10% FBS. For a total culture of 3 weeks, phenotypic gene expression in chondrocyte-seeded hydrogels was maintained at high levels in medium with 1% ITS plus 2% FBS, while it was decreased to varying degrees in the other groups. In conclusion, with 1% ITS, medium with 2% FBS could promote chondrocyte biosynthesis and cell division, and prevented cell dedifferentiation in three-dimensional alginate scaffolds.

Reproduction ◽  
2004 ◽  
Vol 127 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Xiang-Shun Cui ◽  
Yu-Jeong Jeong ◽  
Hwa-Young Lee ◽  
Sun-Hong Cheon ◽  
Nam-Hyung Kim

This study was conducted to determine the effects of polyvinyl alcohol (PVA), fetal bovine serum (FBS) and bovine serum albumin (BSA) on blastocoel formation, total cell number, apoptosis and Bcl-xL and Bak gene expression in porcine presumptive diploid parthenotes developing in vitro. The addition of 0.4% BSA to the culture medium enhanced the development of 2-cell or late 4-cell stage parthenotes to the blastocyst stage (P < 0.01) while FBS decreased the incidence of blastocoel formation. FBS also reduced the frequency of blastocysts developed from both 2-cell (P < 0.001) and late 4-cell (P < 0.05) embryos and increased the percentage of blastocysts undergoing apoptosis (P < 0.001). The relative abundance of Bcl-xL mRNA in presumptive diploid parthenotes in the control, PVA- and BSA-supplemented medium was similar to that of in vivo-derived embryos, but was significantly higher than in parthenotes cultured with FBS supplement (P < 0.05). Bak mRNA significantly increased at the blastocyst stage in FBS-supplemented cells (P < 0.01). These results suggest that apoptosis-related gene expression is significantly affected by FBS, and that this may result in alteration of apoptosis and embryo viability of porcine embryos developing in vitro.


2019 ◽  
Vol 22 (2) ◽  
pp. 252-259
Author(s):  
Michelle Peneluppi Silva ◽  
Patrícia Pimentel De Barros ◽  
Adeline Lacerda Jorjão ◽  
Rodnei Dennis Rossoni ◽  
Juliana Campos Junqueira ◽  
...  

Objective: The aim of this study was evaluate the effect of Bacillus subtilis on Candida albicans biofilm formation and filamentation by evaluating the gene expression of ALS3, HWP1, BCR1, EFG1 and TEC1. Material and Methods: Mixed (C. albicans / B.subtilis) and monotypic biofilms were cultured in plates at 37°C for 48 h under shaking for counting viable cells (CFU / mL) and analysis of gene expression by real-time PCR. The C. albicans filamentation assay was performed in medium containing 10% fetal bovine serum at 37°C for 6 hours. Data was analysed by t-Student and Mann– Whitney tests. Results: B. subtilis reduced the biofilm formation of C. albicans in 1 log when cultured in the same environment (p<0.0001). In addition, it significantly reduced the yeast -hypha transition affecting the morphology of C. albicans. Among all of the analyzed genes, the ALS3 and HWP1 genes were the most affected, achieving 111.1- and 333.3- fold decreases in the C. albicans biofilms associated with B. subtilis, respectively. Conclusion: B. subtilis reduced the biofilm formation and filamentation of C. albicans by negatively regulating the ALS3, HWP1, BCR1, EFG1 and TEC1 genes that are essential for the production of biofilm and hyphae.KeywordsBacillus subtilis; Candida albicans; Biofilm; Filamentation; Gene expression.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3921-3926 ◽  
Author(s):  
Kevin S. Jackson ◽  
Kari Inoue ◽  
David A. Davis ◽  
Tyvette S. Hilliard ◽  
Joanna E. Burdette

Ovarian cancers are primarily derived from a single layer of epithelial cells surrounding the ovary, the ovarian surface epithelium (OSE). Ovarian surface proliferation is associated with ovulation and has been suggested to play a role in ovarian surface transformation and cancer progression. Aspects of ovarian surface repair after ovulation include proliferation, migration, and surface regeneration. To study ovarian surface repair, an organ culture system was developed that supports the proliferation, encapsulation, and repair of an artificially wounded surface. Wounded mouse ovaries embedded into an alginate hydrogel matrix have normal OSE cells as demonstrated by expression of cytokeratin 8, vimentin, N-cadherin, and a lack of E-cadherin. Normal OSE cells began proliferating and migrating around wounded surfaces after 1 d of culture. Organ cultures were propagated in medium supplemented with BSA and fetal bovine serum to determine optimal growth conditions. BSA cultured organs had OSE that proliferated significantly more than controls until d 4, whereas fetal bovine serum cultured organs had significantly more surface area encapsulated by OSE. Overall, a three-dimensional ovarian organ culture supports the growth of normal OSE in response to artificial wounding and provides a novel system for investigating wound repair as it relates to the possible role of ovulation and ovarian cancer.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 658-665 ◽  
Author(s):  
JH Falkenburg ◽  
MA Harrington ◽  
RA de Paus ◽  
WK Walsh ◽  
R Daub ◽  
...  

Colony-stimulating factors (CSF) are important factors in the proliferation and differentiation of hematopoietic progenitor cells (HPC), and in the survival and activation of mature blood cells. Interleukin-1 (IL-1) combined with fetal bovine serum (FBS) strongly induces the expression of macrophage-CSF (M-CSF), granulocyte-CSF (G- CSF), and granulocyte-macrophage-CSF (GM-CSF) in fibroblasts. Here, we report on the regulation of CSF gene expression in murine fibroblasts following IL-1 and FBS stimulation. We demonstrate that 10T1/2 murine fibroblasts induced by FBS or IL-1 accumulate M-CSF messenger RNA (mRNA). G-CSF mRNA expression was induced by IL-1, and not by FBS. For GM-CSF expression, induction with both FBS and IL-1 was required. Blocking studies with actinomycin-D showed that active transcription is essential for accumulation of all three CSF mRNAs. After blocking protein synthesis with cycloheximide, IL-1- or FBS-induced M-CSF expression and IL-1 plus FBS-induced GM-CSF expression still occurred and was increased. IL-1-induced G-CSF expression was completely prevented in these cells by pretreatment with cycloheximide, illustrating that, for this effect, intermediate protein synthesis was required. The half-lives of M-CSF transcripts were not substantially altered by addition of IL-1, FBS, or FBS plus IL-1. Using nuclear run- on assays, we demonstrated that the transcription rate of M-CSF was increased up to 20-fold by the addition of FBS, IL-1, or FBS plus IL-1. After blocking protein synthesis with cycloheximide, IL-1-or FBS- induced increase in M-CSF transcription rate was also observed. GM-CSF transcription increased up to fourfold after induction with FBS or IL- 1. G-CSF transcription rate was not altered by FBS or IL-1. Our results indicate that M-CSF expression induced by FBS or IL-1 in these fibroblasts is primarily regulated at the transcriptional level. GM-CSF expression appears to be regulated both transcriptionally and posttranscriptionally, and G-CSF expression is regulated mainly at the posttranscriptional level.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 658-665 ◽  
Author(s):  
JH Falkenburg ◽  
MA Harrington ◽  
RA de Paus ◽  
WK Walsh ◽  
R Daub ◽  
...  

Abstract Colony-stimulating factors (CSF) are important factors in the proliferation and differentiation of hematopoietic progenitor cells (HPC), and in the survival and activation of mature blood cells. Interleukin-1 (IL-1) combined with fetal bovine serum (FBS) strongly induces the expression of macrophage-CSF (M-CSF), granulocyte-CSF (G- CSF), and granulocyte-macrophage-CSF (GM-CSF) in fibroblasts. Here, we report on the regulation of CSF gene expression in murine fibroblasts following IL-1 and FBS stimulation. We demonstrate that 10T1/2 murine fibroblasts induced by FBS or IL-1 accumulate M-CSF messenger RNA (mRNA). G-CSF mRNA expression was induced by IL-1, and not by FBS. For GM-CSF expression, induction with both FBS and IL-1 was required. Blocking studies with actinomycin-D showed that active transcription is essential for accumulation of all three CSF mRNAs. After blocking protein synthesis with cycloheximide, IL-1- or FBS-induced M-CSF expression and IL-1 plus FBS-induced GM-CSF expression still occurred and was increased. IL-1-induced G-CSF expression was completely prevented in these cells by pretreatment with cycloheximide, illustrating that, for this effect, intermediate protein synthesis was required. The half-lives of M-CSF transcripts were not substantially altered by addition of IL-1, FBS, or FBS plus IL-1. Using nuclear run- on assays, we demonstrated that the transcription rate of M-CSF was increased up to 20-fold by the addition of FBS, IL-1, or FBS plus IL-1. After blocking protein synthesis with cycloheximide, IL-1-or FBS- induced increase in M-CSF transcription rate was also observed. GM-CSF transcription increased up to fourfold after induction with FBS or IL- 1. G-CSF transcription rate was not altered by FBS or IL-1. Our results indicate that M-CSF expression induced by FBS or IL-1 in these fibroblasts is primarily regulated at the transcriptional level. GM-CSF expression appears to be regulated both transcriptionally and posttranscriptionally, and G-CSF expression is regulated mainly at the posttranscriptional level.


2010 ◽  
Vol 16 (11) ◽  
pp. 3467-3484 ◽  
Author(s):  
Karen Bieback ◽  
Viet Anh-Thu Ha ◽  
Andrea Hecker ◽  
Melanie Grassl ◽  
Sven Kinzebach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document